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Introduction

• Many school districts promote parental choice for schools

• School choice problem consists in assigning students to

schools, accounting for students’ preferences and school’s

priorities and capacities

• Choice of algorithm is central to these discussions

• Well-known tradeoff between respecting preferences (Pareto

efficiency) and respecting priorities (fairness/envyfreeness).

• Size of the tradeoff is an empirical question.

1



Introduction

Table 1: Efficiency and envyfreeness across school districts

School district
Algorithms

compared

% students

with Pareto

improving

trade

% students

with justified

envy

Special features

Boston, all levels

(Abdulkadiroğlu et al.,

2006; Pathak, 2017)

Student-proposing

DA, TTC
6.8

Guaranteed placement

and sibling priority,

catchment area

Budapest, secondary

(Biró, 2012; Ortega and

Klein, 2022)

Student-proposing

DA, TTC
64

Combination of school

grades, centralized exam

and own school

test/interview

Ghent elementary (own

source)

School-proposing

DA, TTC
< 1 9.2

Sibling and staff priority,

distance as tie-breaker

New Orleans - elementary

to middle school

(Abdulkadiroğlu et al.,

2020)

School-proposing

DA, TTC
13

Sibling priority,

catchment area

New York, high school

(Abdulkadiroğlu et al.,

2009)

Student-proposing

DA, TTC
5.45∗ 44∗

Mix of schools and of

priority and ranking

criteria

Return ∗ indicates inferred values when these statistics were not directly available.
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Introduction

Research question: What features of preferences and priorities

are associated with a small or large trade-off?

• Trade-off is well established (Balinski and Sönmez, 1999,

Abdulkadiroğlu and Sönmez, 2003)

• Student-proposing DA and TTC are natural starting points:

• DA maximizes efficiency among algorithms that produce

envy-free outcome (Gale and Shapley, 1962; ?

• TTC performs well (and under some circumstances best)

among efficient and strategyproof mechanisms (Abdulkadiroğlu

et al., 2020; Doğan and Ehlers, 2022; Dur and Paiement, 2022)

• There is no trade-off between efficiency and envyfreeness
when:

• DA is efficient

• DA = TTC (more demanding)
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Abdulkadiroğlu and Sönmez, 2003)

• Student-proposing DA and TTC are natural starting points:

• DA maximizes efficiency among algorithms that produce

envy-free outcome (Gale and Shapley, 1962; ?

• TTC performs well (and under some circumstances best)

among efficient and strategyproof mechanisms (Abdulkadiroğlu
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What do we know about this research question ?

• Domain restrictions

• Conditions on priorities such that DA is efficient (Ergin,

2002; Ehlers and Erdil, 2010; Erdil and Kumano, 2019) or DA

and TTC yield the same outcome (Kesten, 2006; Ishida, 2019)

• Conditions on preferences such that DA is efficient or DA

and TTC yield the same outcome (Heo, 2019)

• Combination of preferences and priorities

• Our condition generalizes Salonen and Salonen (2018), Clark

(2006) and Reny (2021)’s conditions

• Conditions for uniqueness of stable matchings in
one-to-one two-sided markets

• Alcalde (1994); Eeckhout (2000); Clark (2006); Niederle and

Yariv (2009); Legros and Newman (2010); Romero-Medina

and Triossi (2013); Lee and Yariv (2014); Gutin et al. (2023)

• But recall that uniqueness does not imply efficiency
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Looking at priorities and preferences together

• Motivation: Priorities are not exogenous but expression of

what preferences school districts view as legitimate:

• distance

• siblings

• religiosity

• language programs

• Pathak (2017)’s conjecture

“Correlation between preferences and priorities induced by

proximity may, in turn, result in less scope for Pareto-

improving trades across priority groups that involve sit-

uations of justified envy. This pattern may then result in

a small degree of inefficiency in DA.”
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Preview of the paper

• We identify a new condition, the Generalized Mutually Best
Pair (GMBP) condition that captures the degree to which
priorities and preferences are congruent

• Focuses on the parts of preferences that are relevant for the

match (simplified market)

• Under the GMBP:

• DA is efficient

• The envyfree allocation is unique

• DA, school-proposing DA and Immediate Acceptance algo

yield the same allocation

• All other situations where DA is efficient are situations with

multiple envyfree allocations
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Model

• n students with strict preferences ≻i over schools;

• m schools, with capacity qs and strict priorities Ps over

students;

• A market E is given by (≻,P, q);

• A matching is a mapping µ : I → S ∪ {sm+1};
• A matching is feasible if it does not match more students to

a school than its capacity, for all schools;

• A feasible matching µ is (Pareto) efficient if there does not

exist another feasible matching µ′ such that µ′(i) ⪰i µ(i) for

all i and strictly so for some i ;

• A feasible matching µ is envyfree if there does not exist (i , s)

such that s ≻i µ(i) and |µ−1(s)| < qs or iPs j for some

j ∈ µ−1(s).

7
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Direct priority-based mechanisms

Direct priority-based mechanisms map students’ preferences ≻i ,

school capacities q and priorities P into feasible allocations

• Student-proposing deferred acceptance (DA)

• School-proposing deferred acceptance (school-proposing DA)

• Top-trading cycle (TTC)

• Immediate acceptance (IA) (aka Boston mechanism)

8



Eeckhout (2000)’s sufficient condition for uniqueness

• One-to-one two-sided matching environment

• In a context where all schools have unit capacity: there

exists a re-ordering of students and schools such that students

and schools are the “mutually best pairs”, i.e. si ≻i sk for

all k > i and iPsik for all k > i .

• Eeckhout (2000) shows that this condition ensures uniqueness

of the stable matching

• We find that this condition also ensures that DA is efficient

and leads to the same outcome as TTC.
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Eeckhout’s condition is restrictive

• Consider the following market with unit-capacity schools with

preferences and priorities as follows:

i1 : s1 s3 s2

i2 : s2 s1

i3 : s3

s1 : i2 i1

s2 : i1 i2

s3 : i1 i3

10



Eeckhout’s condition is restrictive

• Consider the following market with unit-capacity schools with

preferences and priorities as follows:

i1 : s1 s3 s2

i2 : s2 s1

i3 : s3

s1 : i2 i1

s2 : i1 i2

s3 : i1 i3

• Doesn’t satisfy Eeckhout’s condition: no mutually best pairs

to start with

• Yet, DA is efficient (moreover, DA = TTC and the envyfree

matching is unique)
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Extending Eeckhout’s condition: Simplified market

• Consider the same market

i1 : s1 s3 ZZs2

i2 : s2 s1

i3 : s3

s1 : i2 i1

s2 : SSi1 i2

s3 : i1 i3

• For student 1, school 2 is irrelevant because school 3 is a

”safe school” (they’re sure to get it if they ask)

• We can remove s2 from their preferences (and remove s1 from

school 2’s priority list)

12



Simplified market - iterative elimination of irrelevant schools

• Once s2 has been removed, s1 becomes irrelevant for student

2, and then s3 becomes irrelevant for student 1

i1 : s1 s3 ZZs2

i2 : s2 ZZs1

i3 : s3

s1 : SSi2 i1

s2 : SSi1 i2

s3 : i1 i3

• The simplified market satisfies the mutually best pair

condition.

• Simplified market E∗ associated with E : given by the
outcome of the iterative elimination of irrelevant schools,
E∗ = (≻∗,P∗, q). Definition

• Preferences are truncated at most preferred “safe school”

Priority list P∗ is a selection of P

• Lemma: The set of envyfree allocations of E and E∗ are the

same

13
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Many-to-one environments

Consider the following market with preferences, capacities and

priorities as follows:

i1 : s2 s1

i2 : s1

i3 : s1 s2

i4 : s1 s2 s3

s1 : i1 i2 i3 i4 (capacity = 2)

s2 : i2 i1 i4 i3 (capacity = 1)

s3 : i4 (capacity = 1)

• We cannot further simplify the market.

• Mutually best pair condition not satisfied even if we divide

school 1 into two mini-schools

• Yet, DA is efficient: (i1, s2), (i2, s1), (i3, s1), (i4, s3)

• Problem: Only top priority student is considered even though

schools can admit 2 students!

14
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Many-to-one environments: look at top qs students

Definition (Sequential Mutually Best Pair condition)

A market E = (≻,P, q) satisfies the Sequential Mutually Best

Pair condition if there is a reordering of students (i1, i2, ...) and an

associated list of schools S , (s(1), s(2), ...), where s(i) ∈ S stands for

the school associated with student i and the same school does not

appear more times than its capacity in the list, such that:

1. s(1) ⪰i1 s for all s ∈ S \ {s(1)} and i1 is among the top qs(1)
students in school s(1)’s priority list,

2. (for k > 1), s(k) ⪰ik s for all s ∈ Sk = {s ∈ S : qks > 0},
where qks = qs −

∑k−1
l=1 1{s(l)=s} is the remaining capacity of

school s by the time we reach student ik , and student ik is

among the top qks(k) students in school s(k)’s priorities, among

students ik , ik+1, .....

15
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Sequential Mutually Best Pair (SMBP) condition

Revisiting our earlier example:

i1 : s2 s1

i2 : s1

i3 : s1 s2

i4 : s1 s2 s3

s1 : i1 i2 i3 i4 (capacity = 2)

s2 : i2 i1 i4 i3 (capacity = 1)

s3 : i4 (capacity = 1)

• This market satisfies the SMBP condition:

i2 i2 i3 i4

s1 s2 s1 s4

16
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No trade-off between efficiency and envyfreeness

Definition A market satisfies the Generalized Mutually Best

Pairs (GMBP) condition if its simplified market E∗ satisfies the

SMBP condition.

Proposition 1 Suppose the market E = (≻,P , q) satisfies the

GMBP condition. Then, there is a unique envyfree matching and it

is efficient. It is produced by the student-proposing DA, and by

(the Nash eqm of) the school-proposing DA and IA.

Sketch of proof: (1) Establish that the allocation produced by

matching sequetially mutually best pairs is the unique envyfree

allocation in E∗ (and hence in E), (2) argue that it is efficient, (3)

argue that all these mechanisms produce envyfree allocations.
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Irrelevance of the algorithm

Proposition 2 If E = (≻,P , q) satisfies the sequential MBP

condition, then TTC, the student-proposing DA, the

school-proposing DA and IA (at Nash equilibrium) yield the same

allocation and this allocation is both efficient and envyfree.

Sketch of proof: Show that the allocation produced by the

sequential matching of mutually best pairs is also the TTC

allocation, using a result from Dur and Paiement (2022) according

to which every student weakly prefers their assignment from TTC

than any school for which they are among the top qs students.

18
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GMPB is not necessary for efficiency

Example (all schools have unit capacity)

i1 : s3 s1

i2 : s2

i3 : s1 s2 s3

s1 : i1 i3

s2 : i2 i3

s3 : i3 i1

• This market does not meet GMBP

• Yet, DA is efficient: (i1, s3), (i2, s2), (i3, s1).

• Interestingly, this example is also one where the set of

envyfree allocation is not unique.
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Non-uniqueness when GMBP is not satisfied and DA is efficient

Proposition 3 School choice market E = (≻, P, q) satisfies the

GMBP condition if and only if it admits a unique envyfree

allocation and that envyfree allocation is efficient.

Sketch of proof: By contradiction: suppose that GMBP is not

satisfied but there is a unique envyfree allocation that also happens

to be efficient.

In the remaining simplified market, students can have a single safe

school on their ROLs. Hence the set of priority students at

different schools are disjoint and the school-proposing DA will

finish after one round.

Argue (by efficiency) that one of the students in this submarket

must receive their best choice among schools with remaining

capacity. A contradiction.
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Relevance in applied contexts

Preferences Priorities Application
Ergin’s

acyclity

MBP

everywhere

Sequential

MBP

Generalized

MBP

Any

Identical

priorities (e.g.

based on test

scores)

University and high

school admissions in

several countries

✓ ✓ ✓ ✓

uis = dis πis = dis

Match-quality

priorities and

preferences

✓ ✓ ✓

uis = dis + vs πis = dis + gi

Match-quality +

common priorities

and preferences

✓ ✓ ✓

Prefers school
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Back to empirical evidence

School district
Algorithms

compared

% students

with Pareto

improving

trade

% students

with justified

envy

Special features

Boston, all levels

(Abdulkadiroğlu et al.,

2006; Pathak, 2017)

Student-proposing

DA, TTC
6.8

Guaranteed placement

and sibling priority,

catchment area

Budapest, secondary

(Biró, 2012; Ortega and

Klein, 2022)

Student-proposing

DA, TTC
64

Combination of school

grades, centralized exam

and own school

test/interview

Ghent elementary (own

source)

school-proposing

DA, TTC
< 1 9.2

Sibling and staff priority,

distance as tie-breaker

New Orleans - elementary

to middle school

(Abdulkadiroğlu et al.,

2020)

school-proposing

DA, TTC
13

Sibling priority,

catchment area

New York, high school

(Abdulkadiroğlu et al.,

2009)

Student-proposing

DA, TTC
5.45∗ 44∗

Mix of schools and of

priority and ranking

criteria

∗ indicates inferred values when these statistics were not directly available.
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Quantifying the tradeoffs

• Assume cardinal utilities underlying student preferences take the

following form:

uis = λ (δdis + (1− δ)vs)︸ ︷︷ ︸
“Structural” part

+(1− λ)εis ,

• dis : student-school match quality (distance, religion, academic

inclination);

• vs : school characteristics that are valued equally by all students.

• εis : idiosyncratic component capturing individual taste

• We consider the following priority structure for schools:

πis = α (βdis + (1− β)gi ) + (1− α)ηis ,

• gi : priorities based on student characteristics and single tie-breaking;

• ηis : residual priorities based on idiosyncratic factors or multiple

tie-breaking.
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Quantifying the tradeoffs

• A school market environment is characterized by the vector of

parameters (λ, δ, α, β), the number of schools m, and (equal)

school capacities q;

• For each school market, we draw 1,000 realizations of the

vector of variables (dis , vs , εis , gi , ηis) independently from the

uniform distribution on [0, 1].
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Quantifying the tradeoffs

Table 2: Percentage of markets where DA

is efficient, SMBP and GMBP are satisfied

(1) (2) (3)

Preferences Priorities DA is efficient SMBP GMBP

λ = 1

α = 1 100 100 100

α = 0.95 73.86 64.43 72.25

α = 0.90 15.55 12.24 15.05

λ = 0.75

α = 1 15.94 8.70 14.78

α = 0.95 4.67 0.01 3.42

α = 0.90 0.23 0.00 0.13

λ = 0.5

α = 1 8.08 4.82 6.57

α = 0.95 1.49 0.00 0.41

α = 0.90 0.08 0.00 0.01

λ = 0.25

α = 1 6.23 4.76 5.08

α = 0.95 1.02 0.00 0.10

α = 0.90 0.06 0.00 0.00

λ = 0

α = 1 5.17 4.76 4.79

α = 0.95 0.62 0.00 0.07

α = 0.90 0.07 0.00 0.00

• The ability of DA to

generate efficient

allocations varies

strongly across

markets

• Efficiency of DA

increases with λ and

α (less noisy

priorities and

preferences)

• GMBP captures a

larger fraction of

markets where DA is

efficient

• Ability of GMBP to

capture when DA is

efficient increases

with λ and α
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Quantifying the tradeoffs (fraction of markets where DA is ef-

ficient)

• A closer look when we fix λ and vary α: λ = 1, α = 1
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Quantifying the tradeoffs

• A closer look when we fix λ and vary α: λ = 1, α = 0.75
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Quantifying the tradeoffs

• A closer look when we fix λ and vary α: λ = 1, α = 0.5
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Concluding comments

• When is there a trade-off between preferences (efficiency) and

priorities (envyfreeness)?

• Answer: If priorities are sufficiently related to preferences as
measured by the GMBP condition and in this case the choice
of algorithm is second order

• GMBP maximally captures those markets with a unique and

efficient envyfree allocation

• Policy implications:

• Understand your market: what drive student preferences and

access whether school priorities are likely to be congruent with

• When designing school choices, increase the probability that

your market meets GMBP: use single tie-breaking rule to

promote preferences and priority congruence

Empirical evidence
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Simplified market

Irrelevant school: Given E = (≻, P, q), school s is irrelevant for

student i if there exists a school s ′ ̸= s such that s ′ ≻i s, and

|j ∈ I : jPs′ i | < qs′ .

Iterative elimination of irrelevant schools.

• Step 1: For each student i , find all their irrelevant schools. If

no student has an irrelevant school, stop the process.

Otherwise, for each student delete the irrelevant schools from

their preferences, and delete the student from the priority list

of each irrelevant school.

• Step k ≥ 2: In the new market with the modified preferences

and priorities, repeat Step 1.

• The process finishes when no student has an irrelevant school.

Return



Generalized Mutually Best Pairs

A market E = (≻,P, q) satisfies the Generalized Mutually Best

Pairs (GMBP) condition if there is a reordering of students

(i1, i2, ...) and an associated list of schools (s1, s2, ...) where the

same school does not appear more times than its capacity, such

that:

1. s1 ≻i1 s for all s ∈ S and i1 is among the top qs1 students in

school s1’s priority list,

2. (for k > 1), sk ≻ik s for all s ∈ Sk = {s ∈ S : qks > 0}, where
qks = qs −

∑k−1
l=1 1{sl=s} is the remaining capacity of school s

by the time we reach student ik , and student ik is among the

top qksk students in school sk , among students ik , ik+1, .....

Return



GBMP not necessary Example

Consider the following market with preferences and priorities as

follows (all schools have unit capacity):

i1 : s3 s1

i2 : s2

i3 : s1 s2 s3

s1 : i1 i3

s2 : i2 i3

s3 : i3 i1

• The market does not meet GMBP: while i2 and s2 are

mutually best, the process stops there.

• Yet, DA is efficient, and yields the same outcome as TTC

(i1, s3), (i2, s2), (i3, s1).

• Interestingly, this example is also one where the set of

envyfree allocation is not unique.

Return



Mechanisms: Student-proposing deferred acceptance (DA)

Step 1: Each student i proposes to the best school according to

≻i . Each school s provisionally accepts the qs -highest ranked

students, according to Ps , among those students that have

proposed to s, and rejects the others.

Step k: Each student i , who has not been previously accepted,

proposes to the best school according to ≻i , among those schools

that have not yet rejected i . Each school s provisionally accepts

the qs -highest ranked students, according to Ps , among those

students that have proposed to s along steps 1 to k + 1, and

rejects the others.

The algorithm terminates at the step where no rejections are made

and provisional acceptances become definitive by matching each

school s to the set of students provisionally accepted at this step.



Mechanisms: Top-trading cycles (TTC)

Step 1: Each student i points to the best school according to ≻i . If no school

is acceptable, i points to sm+1 and is removed from the problem. Each school s

points to the best student according to Ps , and sm+1 points to all students.

There exists at least one cycle. Each student i in a cycle is matched to the

school s that they point to, in which case i and a seat in s are removed from

the problem. If i points to sm+1. They remain unmatched and i is removed

from the problem.

Step k. Each remaining student i points to the best school according to ≻s ,

among the schools that still have empty seats. Each school s with an empty

seat, points to the best student, according to Ps , among the remaining

students, and sm+1 points to all of these students. There is at least one cycle.

Each student i in a cycle is matched to the school s that they point to, and i

and a seat in s are removed from the problem. If i points to sm+1, one remains

unmatched and i is removed from the problem.

The algorithm terminates when each student i is either matched to a school or

to unassigned.



Mechanisms: Immediate acceptance (IA)

Step 1: Each student i proposes to the best school according to

≻i . Each school s accepts the qs -highest ranked students,

according to Ps , among those students that have proposed to s,

and rejects the others. Accepted students are definitive matched to

the school. Schools’ capacities are reduced by the number of

students accepted.

Step k: Each student i , who has not been previously accepted,

proposes to the best school according to ≻i , among those available

schools that have not yet rejected i . Each school s accepts the

qs -highest ranked students, according to Ps , among those students

that have proposed to s, and rejects the others. Accepted students

are definitive assigned to the school.Schools’ capacities are reduced

by the number of students accepted.

The algorithm terminates at the step where no rejections are made.



References
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