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1 Introduction

Many countries promote parental choice for schools. How choice is actually implemented

greatly varies across countries and school districts and is often hotly debated by stakeholders.

A cornerstone of this debate is the choice of the algorithm used to allocate students to schools,

when capacity is limited. Indeed, different algorithms will typically result in different final

allocations, even when submitted preferences and priorities are the same.

In their classic paper, Abdulkadiroğlu and Sönmez (2003) identify desirable properties

of matching algorithms in the school choice context. These include efficiency, which can be

interpreted as a measure of the extent to which the algorithm respects students’ preferences,

and envyfreeness, a measure of the extent to which priorities are respected. Unfortunately,

no algorithm exists that always produces an envyfree and efficient final allocation (Balinski

and Sönmez, 1999), and there is a trade-off between respecting students’ preferences and

respecting schools’ priorities. Two strategyproof mechanisms satisfy one of the desiderata:

the student-proposing deferred acceptance (DA) algorithm,1 originally proposed by Gale

and Shapley (1962), always yields an envyfree allocation; the top trading cycles (TTC)

algorithm, first described by Shapley and Scarf (1974), is efficient. Other non-strategyproof

mechanisms are used in practice. They are often variants of the school-proposing DA, which

always produces an envyfree matching but is not efficient (Roth, 1984), or of the immediate

acceptance (IA) algorithm, also known as the Boston mechanism, which produces an envyfree

allocation in equilibrium (Ergin and Sönmez, 2006), but may not be efficient.

How big is the trade-off in practice is an empirical question, and existing evidence is

mixed. Table 1 summarizes some of the available evidence. Abdulkadiroğlu, Pathak, and

Roth (2009) and Che and Tercieux (2019) have documented a significant trade-off between

respecting students’ preferences and schools’ priorities in the NYC High School markets.

In Budapest, Ortega and Klein (2022) have documented large violations of priorities when

using TTC. Using estimated preferences, Calsamiglia, Fu, and Güell (2020) and De Haan,

Gautier, Oosterbeek, and Klaauw (forthcoming) also find significant differences across al-

gorithms. This contrasts with the evidence from the Boston Public Schools system where

Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006) and Pathak (2017) have found very little

difference between the outcomes of DA and TTC. Likewise, we were able to look at data

from the allocation of seats in elementary schools in the city of Ghent (Belgium) and found

the school-proposing DA close to be efficient. Evidence from New Orleans is somewhere in

between.

These examples raise the question of when the choice of algorithms actually matters:

When should a school district spend time weighting the choice among algorithms? When is

1When not specified, we refer to the student-proposing DA algorithm as DA in short.
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Table 1: The tension between efficiency and envyfreeness across school districts

School district
Algorithms
compared

% students
with Pareto
improving
trade

% students
with
justified
envy

Special features

Boston, all levels
(Abdulkadiroğlu,
Pathak, Roth, and
Sönmez, 2006;
Pathak, 2017)

Student-proposing
DA, TTC

6.8

Guaranteed
placement and
sibling priority,
catchment area

Budapest,
secondary (Biró,
2012; Ortega and
Klein, 2022)

Student-proposing
DA, TTC

64

Combination of
school grades,
centralized exam
and own school
test/interview

Ghent elementary
(own source)

school-proposing
DA, TTC

< 1 9.2
Sibling and staff
priority, distance
as tie-breaker

New Orleans -
elementary to
middle school
(Abdulkadiroğlu,
Che, Pathak, Roth,
and Tercieux,
2020)

school-proposing
DA, TTC

13
Sibling priority,
catchment area

New York, high
school
(Abdulkadiroğlu,
Pathak, and Roth,
2009)

Student-proposing
DA, TTC

5.45∗ 44∗
Mix of schools and
of priority and
ranking criteria

∗ indicates inferred values when these statistics were not directly available. There
are no commonly accepted measures of the efficiency and envyfreeness trade-off. We
consider two ordinal measures. A first measure is the fraction of students in the student-
proposing DA with an available Pareto improving trade. A student is said to have a
Pareto improving trade if there exists one or more students, and exchanges of seats
among them, such that all are better off based on submitted preferences. A second
measure, taking TTC allocation as starting point, is the fraction of students who have
justified envy, i.e. they are not accepted at a school that they prefer to their assigned
school, even though a student with lower priority got in (Doğan and Ehlers (2022)
provides foundations for this measure).
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the choice of the algorithm a second-order issue?

We identify a new condition on preferences and priorities under which there is no trade-

off between the two goals: there is an envyfree and efficient allocation, and in fact it is

also unique. Our condition, Generalized Mutually Best Pairs (GMBP), generalizes existing

conditions identified in the literature. Like some of the existing conditions, it seeks to capture

the degree to which priorities and preferences are congruent, but it restricts attention to the

parts of the preferences and priorities that actually matter for the allocation (we call it the

simplified market). Some students who have priority in a school may never need to consider

it because they can access a preferred school for sure. Reversely, some schools that students

have listed in their preferences may not be attainable anyways. Roughly speaking, our

GMBP condition is satisfied if, in the simplified market, we can sequentially match students

to the best school in their preference lists for which their priority qualifies them for one of

the available seats. If a market satisfies the GMBP condition, then there is no trade-off

between efficiency and envyfreeness. There is a unique envyfree allocation and it is efficient.

It is reached at equilibrium by the student-proposing DA, the school-proposing DA, the IA

algorithm or any other mechanism that produces an envyfree allocation. Moreover, if we can

sequentially match students to their best available schools in the original market (without

simplifying), then all the algorithms – including TTC – produce the same allocation that is

both efficient and envyfree.

We discuss how this condition naturally arises in existing school choice environments.

An expanding empirical literature has shown that parents typically value school quality

and proximity (Abdulkadiroğlu, Agarwal, and Pathak, 2017; Fack, Grenet, and He, 2019).

We show that such preferences, when combined with priorities based on distance, meet our

GMBP condition. Likewise, to the extent that preferences for academic quality correlate

with academic performance, priorities based on academic performance will also meet the

condition. We show through simulations that our condition significantly expands the set of

known environments for which there is no trade-off between efficiency and envyfreeness. Our

results shed light on the differences in performance across school environments described in

Table 1.

Positioning within the literature. A number of papers have explored the trade-

off between envyfreeness and efficiency in school choice markets, starting from the seminal

papers by Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003). The DA and

TTC algorithms are natural starting points here: DA maximizes efficiency among algorithms

that produce envyfree outcomes (Gale and Shapley, 1962; Balinski and Sönmez, 1999), and

TTC performs well (and under some circumstances best) on envyfreenes, within the class of

efficient and strategyproof mechanisms (Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux,

2020; Doğan and Ehlers, 2022). When TTC does not involve any violation of priorities, it
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yields the same outcome as DA.

One approach has been to identify domain restrictions on the set of priorities such that

DA is efficient (Ergin, 2002; Ehlers and Erdil, 2010; Erdil and Kumano, 2019; Ishida, 2019)

or TTC yields the same outcome as DA (Kesten, 2006; Ishida, 2019), for any preference

profile.2 Heo (2019) explores the flip-side question of domain restrictions on preferences such

that DA is efficient or TTC yields the same outcome as DA, for any priority profile.

Of course, whether efficiency and envyfreeness conflict depends on the combination of

preferences and priorities. Moreover, in practice, priorities are not entirely independent of

preferences and are instead a partial reflection of what school districts (or schools) view as

legitimate preferences. For example, many school districts give priorities to siblings or to

students living close to schools, and parents often prefer to send their children to nearby

schools or to the school where a sibling is already educated, everything else equal.

Our GMBP condition captures this insight and generalizes existing conditions, placed

on how preferences and priorities relate, known to guarantee that DA is efficient, such as

Salonen and Salonen (2018)’s single peakedness, Clark (2006)’s no crossing condition or Reny

(2021)’s student-oriented preferences.3

The trade-off between efficiency and envyfreeness is conceptually connected to the issue

of uniqueness of stable matchings which has been explored in one-to-one two-sided markets

(Alcalde, 1994; Eeckhout, 2000; Clark, 2006; Niederle and Yariv, 2009; Legros and Newman,

2010; Romero-Medina and Triossi, 2013; Lee and Yariv, 2014; Gutin, Neary, and Yeo, 2021).

Intuitively, given the lattice structure of stable matchings (Knuth, 1997), uniqueness of

stable matchings suggests that preferences on both sides (priorities and preferences in the

school choice context) are “sufficiently compatible” that starting from one side or the other

when using deferred acceptance does not impact the final outcome. Methodologically, our

procedure of removing irrelevant choices of students to define the simplified market, is related

to the simplification of Gutin, Neary, and Yeo (2021). The main difference is that our

simplification process only removes irrelevant choices from students’ preferences and update

schools’ priorities accordingly. We do not remove irrelevant students for schools, because

doing so impedes efficiency.

Though uniqueness of stable matchings does not in itself guarantee efficiency (in a school

choice context) nor the equivalence between DA and TTC, we argue in Section 4 that most

existing conditions that have been identified to imply uniqueness rely, in their definition or

their proof, on some form of mutually best pairs condition. They therefore, once appro-

2The second question is more restrictive as DA can be efficient without producing the same allocation as
TTC, whereas TTC yields the same allocation as DA when it is envyfree.

3Clark (2006) originally solely focused on the uniqueness of stable matching in one-to-one two-sided
matching but Salonen and Salonen (2018) show that his condition also ensures that DA is efficient (and that
TTC yields the same outcome as DA).
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priately extended to one-to-many matching contexts, also imply that DA is efficient. This

connects the two strands of the literature.

2 Model

There is a wide variety of algorithms and procedures used in practice to match students to

schools. We focus on direct and priority-based mechanisms which elicit preference rankings

from students (this is the “direct” part) and use priorities to assign students to schools when

demand exceeds capacity (the “priority” part).

Let I denote the set of students (|I| = n), and S the set of schools (|S| = m). Let

school sm+1 represent the outside option for the students. A market is defined by students’

preferences over schools, schools’ priorities over students and schools’ capacities, and is

denoted by E = (�, P, q), where � are students’ preferences over S∪{sm+1}, P are schools’

priorities, and q = (q1, ..., qm) ∈ Nm are school capacities (without loss of generality, we let

the capacity of sm+1 to be equal to n). We assume that preferences and priorities are strict

linear orders (no indifference). In addition, the priority order of each school only contains

those students who consider the school as acceptable, i.e. preferred to their outside options.

An allocation is a mapping µ : I → S ∪ {sm+1} that describes to which schools students

are assigned, with the understanding that µ(i) = sm+1 means that student i is not assigned.

An allocation is feasible if it does not allocate more students to a school than its capacity,

|µ−1(s)| ≤ qs , for every s ∈ S. A feasible allocation µ is Pareto efficient if it is not Pareto

dominated by any other feasible allocation µ′, that is, if there is no µ′ such that µ′(i) �i µ(i)

for all i ∈ I and µ′(i) �i µ(i) for some i ∈ I. A feasible allocation is blocked by a pair (i, s)

if i prefers s to her assignment µ(i), and either s has some empty seats under µ, or there

is a lower priority student j who is assigned to s under µ, that is, formally, s �i µ(i), and

|µ−1(s)| < qs or iPsj for some j ∈ µ−1(s). An allocation is said to be envyfree or stable if it

is not blocked by a pair.4 A direct priority-based mechanism is a function that maps student

preferences �, schools’ capacities q and priorities P into a feasible allocation.

We first consider two mechanisms at the center of the debate between envyfreeness and

efficiency. The first one is the student-proposing DA, first proposed by Gale and Shapley

(1962). The mechanism is strategyproof, i.e., it is a weakly dominant strategy for students

to submit their true preferences, and it always produces an envyfree allocation based on

the submitted preferences and priorities. The allocation it produces Pareto-dominates all

other envyfree allocations (Gale and Shapley, 1962; Balinski and Sönmez, 1999). The second

algorithm, TTC, was first described in Shapley and Scarf (1974) and adapted to the school

4Given our modeling choice for the outside option, this definition implies that an envyfree allocation is
also individually rational since students can always block with their outside option.
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choice problem by Abdulkadiroğlu and Sönmez (2003). The mechanism is strategyproof and

always produces an efficient allocation based on submitted preferences. However, it may

violate priorities.

The student-proposing DA and TTC serve as natural benchmarks to measure the ten-

sion between envyfreeness and efficiency: student-proposing DA maximizes efficiency among

algorithms that produce envyfree allocations and TTC performs well (and under some cir-

cumstances best) on envyfreeness, within the class of efficient and strategyproof mechanisms

(Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux, 2020; Doğan and Ehlers, 2022).5

Additionally, two common mechanisms used in practice are the school-proposing DA and

the Immediate Acceptance algorithm. Unlike its student-proposing counterpart, the school-

proposing DA offers seats to students in order of school priorities. It always produces an

envyfree allocation but is neither efficient nor strategyproof: in the Nash equilibrium of the

school-proposing DA, students may be tempted to misreport their preferences to get a better

(still envyfree) allocation (Roth, 1982).

Like student-proposing DA, the IA mechanism starts with students’ preferences but it

allocates seats first to first choices (possibly using school priorities if demand is higher than

the number of seats), before considering second choices. The IA mechanism is efficient based

on submitted preferences but it is not strategyproof: some students may have incentives to

submit preferences different from their true preferences in order to get a preferred assignment.

Ergin and Sönmez (2006) show that the set of Nash equilibrium outcomes is equal to the set

of feasible envyfree allocations.

In the rest of the paper, we assume that students play the weakly dominant strategy of

truth telling under both student-proposing DA and TTC and that they play Nash equilibrium

strategies under the school-proposing DA and the IA mechanisms. All mechanisms are

described formally in the Appendix.

3 The Generalized Mutually Best Pairs condition

We are interested in analyzing the set of markets – conditions on priorities and preferences

– for which there is no conflict between envyfreeness and efficiency. Since the DA allocation

Pareto dominates all other envyfree allocations, the most direct formal translation of this

question is to ask when DA is efficient. A slightly more demanding requirement is to ask

when DA yields the same allocation as TTC. This requirement is more demanding because

5Specifically, TTC minimizes envy within the class of efficient and strategyproof mechanisms when all
schools have unit capacity. This is no longer true with capacities larger than one. Morrill (2015) and Hakimov
and Kesten (2018) have proposed variants of Abdulkadiroğlu and Sönmez (2003)’s TTC version for multiple
units that reduce envy. Because none of these variants would change our results, we work with the better
known Abdulkadiroğlu and Sönmez (2003)’s variant.
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DA can be efficient, and yet yield a different allocation than TTC. In that case, TTC is

efficient (as always) but not envy-free.

Our condition builds on Eeckhout (2000)’s sufficient condition for uniqueness in one-to-

one two-sided matching environments. Specifically, in a context where all schools have unit

capacity, Eeckhout (2000)’s condition comes down to requiring that there exists a reordering

of schools and students such that (unit capacity) schools and students are mutually best

pairs, i.e. for each i ∈ S, si �i sk for all k > i and iPsik for all k > i.

In an environment with unit capacity, this condition trivially ensures that DA is efficient

and leads to the same allocation as TTC. To see this, consider first student 1 and school 1.

School 1 is student 1’s top choice and since they have the highest priority in that school,

they will be assigned to that school for sure under DA.6 Next, consider student 2. They

may prefer school 1 to school 2 but under the mutually best pairs condition, school 2 is their

top or second top (after school 1) preferred school. Hence, since student 2 is also school 2’s

preferred student (except possibly for student 1 who is already assigned), student 2 will be

assigned to school 2 under DA. As the process continues, it is clear that, under DA, student

i will be allocated to school si. This outcome is also the outcome that arises from TTC by

iterated elimination of unit length cycles (school 1 pointing to student 1 and the reverse,

etc).

Eeckhout (2000) finds that this condition is sufficient for the set of envyfree allocations

to be singleton and we have just seen that it is also sufficient for DA to be efficient and

for DA to yield the same allocation as TTC. The next example suggests that this condition

might be over-restrictive, even in the unit capacity school context.

Example 1. Consider a market with unit-capacity schools. We describe students’ pref-

erences by listing, for each student, their acceptable schools in their preferences orders.

Similarly for schools’ priorities. The preferences and priorities are as follows:

i1 : s1 s3 s2

i2 : s2 s1

i3 : s3

s1 : i2 i1

s2 : i1 i2

s3 : i1 i3

It is easily checked that DA and TTC yield the same allocation, (i1, s1), (i2, s2), (i3, s3),

where (i, s) means that student i is assigned to school s, and that there is a unique envyfree

allocation. Yet, this market does not satisfy Eeckhout (2000)’s condition because there is no

mutually best pair to start with.

Now consider school s2 in student i1’s preferences. School s2 is an irrelevant choice for

student i1 since that student is ranked first by school s3 and they prefer school s3 to school

6We use “they” as the gender-neutral third person singular pronoun.
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s2. Hence, student i1 will never be assigned to school s2 in any envyfree allocation and we

might as well remove them from the priority of school s2.

Building on this intuition, we can define for every school market an associated “simplified

school market” where students’ preferences are truncated up to the best school they can get

for sure (their “safe school”) and priorities are updated accordingly. In the example above

this gives, after two additional rounds of truncations:

i1 : s1

i2 : s2

i3 : s3

s1 : i1

s2 : i2

s3 : i3

This simplified market satisfies Eeckhout (2000)’s mutually best pairs condition. We

will formally show in Lemma 1 below that, by construction, it admits the same set of

envyfree allocations as the original market. Therefore, we can leverage the mutually best

pairs condition to conclude that the original market admits a unique envyfree allocation and

that DA is efficient.7 �

Following Example 1, we will consider, from now on, simplified markets where irrelevant

choices have been removed from students’ rank order lists through iterated truncations at

the best “safe school”, and priority lists have been updated accordingly.

Definition 1 (Simplified market associated with E). Consider any school choice market

E = (�, P, q). Its associated simplified market is given by E∗ = (�∗, P ∗, q) where

1. �∗i is a truncation of �i at the first school s on �i that ranks student i among its top

qs priority students according to P ∗s .

2. P ∗s is a selection of P to students who rank school s according to �∗.

Because the simplification process only removes irrelevant choices from students’ rank-

order lists, the set of envyfree allocations in the simplified market is the same as in the

original market as the next lemma shows.

Lemma 1. The sets of envyfree allocations in E∗ and its associated simplified version, E,

are the same.

Proof. We first show that all envyfree allocations in E are also envyfree in E∗. Consider the

envyfree allocation µ in E and suppose it is not envyfree in E∗. This means there exists (i, s)

such that s �∗i µ(i) and |µ−1(s)| < qs or iP ∗s j for some j ∈ µ−1(s). But this means that

7In general, truncation will change the outcome of TTC so the fact that TTC yields the same outcome as
DA in the simplified market does not necessarily mean that this property also applies in the original market.
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s �i µ(i) since �∗ is a truncation of � and either |µ−1(s)| < qs or iPsj for some j (since P ∗

is a selection of P ). A contradiction.

Consider now µ, an envyfree allocation in E∗ and suppose it is not envyfree in E . This

means there exists (i, s) such that s �i µ(i) and |µ−1(s)| < qs or iPsj for some j ∈ µ−1(s).
But since �∗ is a truncation of �, s �∗i µ(i) and either |µ−1(s)| < qs or iP ∗s j for some

j ∈ µ−1(s) must hold. A contradiction.

Our second example illustrates the added difficulty arising from allowing schools to have

multiple seats.

Example 2. Consider the following market with preferences, capacities and priorities as

follows:
i1 : s2 s1

i2 : s1

i3 : s1 s2

i4 : s1 s2 s3

s1 : i1 i2 i3 i4 (capacity = 2)

s2 : i2 i1 i4 i3 (capacity = 1)

s3 : i4 (capacity = 1)

Note first that the school choice environment cannot be further simplified: there is no

irrelevant choices in students’ rank order lists. Furthermore, this market does not satisfy the

mutually best pairs condition, even if we divide the schools into mini-schools of unit capacity

that inherit the priorities of the original schools as is typically done (see e.g. Abdulkadiroğlu

and Sönmez (2003)). Yet, DA is efficient and produces the same allocation as TTC, namely,

(i1, s2), (i2, s1), (i3, s1), (i4, s3).

The issue here is that only school s1’s top priority student is considered when checking

the mutually best pairs condition, even though school s1 can admit 2 students.

One way to address this issue is to consider schools’ top q students when identifying

mutually best pairs. So, in this case, student i2 and school s1 are mutually best pairs since

student i2 is one of school s1’s top 2 students. Once student i2 is removed from schools’

priority lists, student i1 and school s2 become mutually best pairs, leaving student i3 to be

mutually best pair with school s1, and finally student i4 and school s3 are a mutually best

pair. �

We are now ready to introduce our generalized mutually best pairs condition. We do this

in two steps. We first define the Sequential Mutual Best Pairs (MBP) condition, which is

the generalisation of Eeckhout’s condition to environments with multi-unit capacity:

Definition 2 (Sequential Mutually Best Pairs condition). A market E = (�, P, q)
satisfies the Sequential Mutually Best Pairs condition if there is a reordering of students

(i1, i2, ...) and an associated list of schools S, (s(1), s(2), ...), where s(i) ∈ S stands for the
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school associated with student i and the same school does not appear more times than its

capacity, such that:

1. s(1) �i1 s for all s ∈ S \ {s(1)} and i1 is among the top qs(1) students in school s(1)’s

priority list,

2. (for k > 1), s(k) �ik s for all s ∈ Sk = {s ∈ S : qks > 0}, where qks = qs −
∑k−1

l=1 1{s(l)=s}

is the remaining capacity of school s by the time we reach student ik, and student ik

is among the top qks(k) students in school s(k)’s priorities, among students ik, ik+1, .....

In words, a market satisfies the Sequential MBP condition if we can sequentially match

students to the best school in their preference lists for which their priority qualifies them

for one of the remaining seats. The sequential Mutually Best Pairs condition describes

environments where Salonen and Salonen (2018)’s Iterated Best Match algorithm converges

(produces a non-wasteful matching, in their terminology).

To illustrate Definition 2 with Example 2, we can reorder students and schools as follows:

i2 i1 i3 i4

s1 s2 s1 s3

Our Generalized Mutually Best Pairs (GMBP) condition imposes the Sequential Mutually

Best Pairs condition only on the simplified version of the original market and is thus a

relaxation of the sequential MBP condition.

Definition 3 (Generalized Mutually Best Pairs condition). A market E = (�, P, q)
satisfies the Generalized Mutually Best Pairs condition if its simplified market E∗ satisfies

the Sequential Mutually Best Pairs condition.

While the sequential MBP condition serves to prevent unrealistic choices in the top of

students’ preferences to derail the MBP condition, the generalized MBP removes uninterested

students from the top of schools’ priorities. The two actions together help us to focus on the

relevant set of possible allocations. We defer the detailed discussion of which school market

environments are likely to satisfy the GMBP condition until Section 4. Let us simply note for

now that the condition captures a sense of compatibility between students’ preferences and

school priorities (mutually best pairs), once we account for the feasible choice set of students

(the mutually best condition is checked sequentially, on the relevant set of alternatives). We

have the following result:

Proposition 1 (No trade-off between efficiency and envyfreeness). Suppose E = (�
, P, q) satisfies the generalized mutually best pairs condition. Then, there is a unique envyfree

allocation and it is efficient. It is produced by the student-proposing DA, school-proposing

DA and IA.
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Proof. We first establish that there is a unique envyfree allocation in E∗ (by Lemma 1,

this implies that there is a unique allocation in E as well). The proof proceeds by iteration.

Consider the reordering of students and schools associated with the application of the GMBP

condition. Student 1 is matched with school s(1) at every envyfree allocation, otherwise the

student blocks the allocation with s(1). Remove this student from the market. Likewise,

student 2 is matched with school s(2) at every envyfree allocation. Otherwise, this student

will block the allocation. Indeed, the only case where student 2 may not be assigned to s(2)

without blocking the assignment with s(2), is when student 1 is assigned to it. But student

1 is allocated to s(1) at every envyfree allocation.

A similar argument applies to student 3. Student 3 will be assigned to s(3) at every

envyfree allocation. Otherwise, they will block the assignment, unless student 1 or 2 is

assigned to that school. But as we have just shown, these students are assigned to s(1) and

s(2), respectively, at every envyfree allocation.

This argument can be repeated for the rest of the students, establishing that there exists

a unique envyfree allocation in the market. Clearly, this allocation is also efficient.

The claim follows from the fact that DA, the school-proposing DA and IA all produce

an envyfree allocation in equilibrium (Roth, 1984; Ergin and Sönmez, 2006).

Proposition 1 does not claim that DA produces the same allocation as TTC. The reason

is that the simplification process removes trading opportunities for TTC. However, if the

original market satisfies the GMBP condition, then we can prove the stronger claim that

TTC, student-proposing DA, school-proposing DA and IA, all produce the same allocation.

In order words, the choice of the algorithm is second order.

Proposition 2 (Irrelevance of the algorithm). If E = (�, P , q) satisfies the sequential

mutually best pairs condition, then TTC, DA, the school-proposing DA and IA yield the same

allocation and this allocation is both efficient and envyfree.

Proof. We simply need to show that TTC yields the same outcome as DA. Note that in the

execution of the TTC, whenever a student points to a school, the school has k remaining

seats, and the student is among the top k students in the school’s priority, they will be

assigned to that school. This is precisely what happens in the execution of the TTC when

the market satisfies the sequential mutually best pairs condition. Indeed, in the first step

student 1 points to s(1) and they are among the top qs(1) students in the school’s priority.

When we remove student 1 from the market, then student 2 points to s(2) and they are

among the top q2s(2) students in the school’s priority. And so on, and so forth, for the rest of

the students.

A natural question that arises is to what extent GMBP is also necessary. The answer is
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negative. There are school choice markets where efficiency and envyfreeness are compatible,

yet they do not satisfy GMBP as Example 3 illustrates.

Example 3. Consider the following market with preferences and priorities as follows (all

schools have unit capacity):

i1 : s3 s1

i2 : s2

i3 : s1 s2 s3

s1 : i1 i3

s2 : i2 i3

s3 : i3 i1

Note first that the school choice environment cannot be further simplified: there is no

irrelevant choice in students’ preferences. Furthermore, this market does not meet the gener-

alized mutually best pair condition: while i2 and s2 are mutually best, the process stops there.

Yet, DA is efficient and produces the same outcome as TTC, namely, (i1, s3), (i2, s2), (i3, s1).

Interestingly, this example is also one where the set of envyfree allocations is not unique:

the school-proposing DA produces (i1, s1), (i2, s2), (i3, s3). �

4 The GBMP condition in stylized school choice envi-

ronments

This section discusses, in the context of stylized school choice environments, how our con-

dition compares with existing conditions that guarantee the efficiency of DA. The exercise

helps crystallize the relationship among existing conditions and build intuition for the way

in which our condition enlarges the set of known environments for which DA is efficient.

To do this, we turn to cardinal representations of preferences and priorities. Let uis denote

a cardinal utility representation for student i’s preference for school s, with the convention

that s �i s
′ if and only if uis > uis′ . Likewise, let πis describe student i’s priority at school s

with the convention that iPsj if and only if πis > πjs. Table 2 shows to what extent different

school choice environments are covered by existing conditions and our GMBP condition.

Ergin (2002) was the first to investigate when DA is efficient in a school choice context.

He identified acyclicity of priorities as a necessary and sufficient condition for DA to be

efficient for any profile of preferences.8

8Acyclicity requires (in addition to a scarcity condition) that there are no three students i, j, k and two
schools, s and s′, such that iPsjPskPs′i. Ergin (2002) shows that this is equivalent to requiring, that for
every pair of schools and for every student ranked below the sum of the two schools’ capacities in one school,
that student’s position differs at most by one across the two schools’ lists of priorities. Ehlers and Erdil
(2010) and Erdil and Kumano (2019) extend this result to the case where priorities are coarse and to quotas,
respectively.
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While his condition does not place any restriction on preferences, it is restrictive. Of all

the stylized environments we consider in Table 2, it is only met in school choice environments

where all schools use the same priorities, e.g., because seats are allocated on the basis of a

test score or on the basis of a single tie-breaking rule.9 All other conditions identified in the

literature happen to rely on the existence of a mutually best pair condition, either in their

definitions or in their proofs.10 Where the conditions differ is in the domain over which this

mutually best pairs condition is required to hold.

The strongest condition requires the mutually best pair condition to hold everywhere.

For one-to-one matching environments it comes down to Alcalde (1994)’s α-reducibility con-

dition as adapted by Clark (2006) and, equivalently, to Niederle and Yariv (2009)’s aligned

preferences. In many-to-one environments, it is equivalent to Salonen and Salonen (2018)’s

single-peaked preferences.

Environments where school priorities and student preferences depend on the same student-

school match quality (e.g. distance, religion, academic inclination) satisfy this condition.

Such preferences and priorities take the form uis = πis = dis, where dis represents the

student-school match quality. The condition also holds if, in addition, schools value student

quality or students value school quality as long as they value these characteristics identically

(no heterogeneity). In this case, preferences take the form uis = dis + vs, and priorities take

the form πis = dis + gi. To verify that this environment satisfies the MBP condition every-

where, consider a I×N matrix, with elements φis = dis +vs +gi. The matrix rows represent

students’ preferences. Indeed, φis > φis′ if and only if uis = dis + vs > uis′ = dis′ + vs′ (the

gi term drops out). Likewise, the matrix columns represent school priorities: φis > φi′s if

and only if πis = dis + gi > πis = di′s + gi′ (the vs term drops out). Assuming no identical

student-quality match quality, a property of this matrix is that there is always an element

that is maximal, for every submatrix. In other words, the MBP condition holds everywhere.

Note that the richer and more realistic environments where students are heterogeneous

in their valuation of quality (e.g. Abdulkadiroğlu, Agarwal, and Pathak (2017)) do not

meet any of the conditions generically. So, for example, if uis = dis + αivs and priorities

are distance-based πis = dis, we can easily construct a situation where a student prefers the

school further away because they value quality more, blocking the construction of a mutually

best pair.

Another environment where the MBP condition holds everywhere is when students prefer

the school where their sibling, if any, goes, and where schools prioritize students with siblings

9Such priorities are common in university admissions, e.g. in China (Chen and Kesten, 2017), Germany
(Grenet, He, and Kübler, 2021), Spain (Arenas and Calsamiglia, 2020) and Turkey (Arslan, 2019), but also
in secondary education, e.g. in Mexico (Chen and Pereyra, 2019), Romania (Pop-Eleches and Urquiola,
2013) and Singapore (Teo, Sethuraman, and Tan, 2001) or for exam schools in many countries.

10This includes Alcalde (1994), Clark (2006), Eeckhout (2000), Legros and Newman (2010), Niederle and
Yariv (2009), Reny (2021), Rong, Tang, and Zhang (2020), and Salonen and Salonen (2018).
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and use a single tie-breaking rule for all others. To see this, consider any subset of schools

and students. If there is a student with a sibling in one the schools, then they will be

mutually best pairs. If no student has a sibling, then all schools will be ranking students in

exactly the same way, and one of these schools (at least) will be the preferred choice of one

of the students (we are back in the environment of the first row of Table 2).

Table 2: Comparing conditions across school choice environments

Preferences Priorities Application Ergin acyclity
MBP
everywhere

Sequential
MBP

GMBP

Any

Identical
priorities (e.g.
based on test
scores)

University and
high school
admissions in
several countries

X X X X

uis = dis πis = dis

Match-quality
priorities and
preferences

X X X

uis = dis + vs πis = dis + gi

Match-quality +
common
priorities and
preferences

X X X

prefers school
with sibling, no
restriction
otherwise

πis =
1(i=sibling) + εi
(εi ∈ [0, 1])

Sibling
priorities, single
tie-breaking rule
for rest

X X X

Prefers one of
the catchment
school, with
some exception

πis =
1i=in catchment +
εi (εi ∈ [0, 1])

Guaranteed
admission in
catchment area
school, single
tie-breaking
otherwise

only in case of
run-away /
attraction
catchment areas

possible more likely

The second strongest condition requires the mutually best pair condition to hold sequen-

tially. In one-to-one settings, this is Eeckhout (2000)’s condition. In one-to-many settings,

it corresponds to environments for which Salonen and Salonen (2018)’s Iterated Best Match

process converges to a non-wasteful matching. The advantage of such condition relative to

the MBP condition everywhere is that it ignores unrealistic preferences that some students

may have and that prevent the MBP condition to hold.

The fifth row of Table 2 provides an illustration of the type of environments this condition

allows. In the example, priority is given to students living in the catchment area of the

schools and these students have essentially guaranteed access to at least one of them (in case

of excess demand, a single tie-breaking rule is used). Most students prefer to go to a school

in their catchment area but some prefer a school outside of their catchment area.

We can first check that if out-of-catchment-area choices are asymmetric, in the sense

that the catchment areas that students select for their out-of-catchment-area first choices

are not the same as the catchment areas that students seek to leave (e.g. there are popular
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catchment areas and run-away catchment areas), then the market satisfies the MBP condition

everywhere. To see this, take any two students and the schools which they list first. If at

least one of them makes a within-catchment-area choice, then at least one of them has top

priority at their preferred school. If both make an out-of-catchment-area choice, the same

priority ordering applies to them because of the single tie-breaking rule and therefore at least

one of them is part of a mutually best pair.

As soon as there is one student in one catchment area (say A) who prefers a school in

another catchment area (say B), and the reverse, the “MBP condition everywhere” fails

(just take the submarket made of these two students and the two schools they prefer).

However, it may still satisfy the sequential MBP. Indeed, through the sequential match of

mutually best pairs, some schools, which the students making out-of-catchment-area choices

listed, will reach capacity and will therefore exit the consideration set for these students.

The sequential process will converge to a reduced set of students making out-of-catchment-

area choices. This school choice market will satisfy the sequential MBP if there are no

cross-catchment-area choices.

We can use this example to illustrate what the generalized MBP condition allows for, on

top of the sequential MBP condition. Consider a student (say student a) in catchment area

A who lists a school in catchment area B as first choice. That student will be ranked below

every student in catchment area B who listed that school as acceptable, even if they are not

interested in that school because they are sure to get another school in catchment area B if

they ask for it (safe school). These students are hampering the formation of mutually best

pairs and the generalized MBP, by truncating students’ preferences at their safe school and

updating priority lists accordingly, will correct this and make the formation of mutually best

pairs easier.

We are unaware of generic environments where the generalized MBP condition is always

met but the sequential MBP condition is not. However, this example illustrates how GMBP

enables the identification of an expanded set of school choice environments where DA is

efficient. The next section quantifies this statement in select stylized environments.

5 Quantification

Having shown qualitatively how the GMBP condition expands on existing conditions, we

turn in this section to a quantitative assessment of the GMBP condition. Specifically, we

generate a large number of school choice markets and check (1) to what extent DA is efficient

in those markets, and (2) to what extent these markets satisfy the sequential and generalized

MBP conditions.

Building on the recent empirical literature in school choice that estimates preferences
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for schools (e.g. Hastings, Kane, and Staiger (2009); Abdulkadiroğlu, Agarwal, and Pathak

(2017); Calsamiglia, Fu, and Güell (2020); Fack, Grenet, and He (2019); Pathak and Shi

(2021)), we assume that cardinal utilities underlying student preferences take the following

form:

uis = λ (δdis + (1− δ)vs) + (1− λ)εis,

where, as before, dis stands for the student-school match quality (distance, religion, academic

inclination), vs captures characteristics of the school that are valued equally by all students,

and εis is an idiosyncratic component capturing individual taste.11

The first term, δdis + (1 − δ)vs, captures the structural part of preferences, driven by

match quality and school characteristics. When δ = 1, preferences are driven by match

quality, which can be understood as the result of horizontal differentiation between schools,

whereas when δ = 0, schools are vertically differentiated in the eyes of students. The

parameter λ determines to what extent idiosyncratic preferences matter. When λ = 1, there

are no idiosyncratic factors beyond match quality. When λ = 0, preferences are entirely

idiosyncratic and independent of priorities.

We consider the following priority structure for schools:

πis = α (βdis + (1− β)gi) + (1− α)ηis,

where gi captures priorities based on student characteristics and single tie-breaking, and

ηis captures residual priorities based on idiosyncratic factors or multiple tie-breaking. The

parameter αmeasures the degree of structure on priorities, whereas the parameter β measures

to what extent priorities are driven by match quality rather than student characteristics

valued equally by all schools (e.g. grades).

We carry out simulations as follows. For each school market environment—characterized

by the vector of parameters (λ, δ, α, β), the number of students n, the number of schools m,

and the school capacities q (we assume all schools have identical capacities), we draw 1,000

realizations of the vector of variables (dis, vs, εis, gi, ηis), where all variables are independently

drawn from the uniform distribution on [0, 1]. This generates 1,000 market realizations for

every specific school market environment. We set n = 1, 000, m = 50 and q = 20.12

Table 3 reports the percentage of market realizations where DA was found to be efficient

and which satisfied the sequential MBP and generalized MBP, respectively. We fix the values

for λ and α, and average over all market realizations and values for δ and β, where δ and β

vary from 0 to 1 in 0.05 increments. The table presents the results for λ taking the values

11The main difference with empirically estimated preferences is that our coefficients on the match quality
and school characteristics are assumed to be common across students.

12We played with different market sizes and school sizes, with no qualitative changes in the results.

17



Table 3: Percentage of markets where DA is efficient, sequential MBP and GMBP are
satisfied

(1) (2) (3)

Preferences Priorities DA is efficient Sequential MBP GMBP

λ = 1
α = 1 41.15 36.79 40.86
α = 0.95 21.76 12.71 20.54

λ = 0.75
α = 1 14.95 8.54 14.07
α = 0.95 3.83 0 2.93

λ = 0.5
α = 1 7.71 4.80 6.54
α = 0.95 1.15 0 0.37

λ = 0.25
α = 1 6.08 4.76 5.1
α = 0.95 0.88 0 0.14

λ = 0
α = 1 5.17 4.76 4.80
α = 0.95 0.76 0 0

Notes: The numbers indicate the percentage of school choice markets for
which DA is efficient (column (1)) and that satisfy, respectively, the sequen-
tial MBP condition (column (2)) and the GMBP condition (column (3)).
Percentages are computed first on the basis of 1,000 independent draws of
variables (dis, vs, εis, gi, ηis) from the uniform distribution [0, 1], for a given
value of δ and β, then averaged over the δ and β parameters taking values
from 0 to 1 in 0.05 increments.

of 1, 0.75, 0.5, 0.25, 0, and α taking the values of 1 and 0.95.13

Three observations stand out from the Table. First, the ability of DA to generate efficient

allocations vary strongly across environments and, in particular, drops sharply with students’

idiosyncratic preferences (low λ) and schools’ idiosyncratic priorities (low α), beyond match

quality. This is when the trade-off between respecting preferences and respecting priorities

is largest.

Second, the GMBP condition outperforms the sequential MBP condition in identifying

the environments for which DA is efficient. The gap is especially big as soon as we allow

for idiosyncratic preferences (λ < 1) or priorities (α < 1). Recall from Example 1 that the

GMBP condition outperforms the sequential MBP condition in situation where the market

does not have mutually best pairs to start with, but by removing the irrelevant schools for

students, new mutually best pairs emerge. This situation is more likely to occur when schools

priorities and students preferences go in opposite direction: schools prefer more students who

prefer them the least. Smaller values for λ or α allow for this possibility.

The third insight is that, for a given value of λ, the GMBP condition is able to identify a

large proportion of the school choice environments for which DA is efficient especially when

13For α taking smaller values such as 0.75, 0.5, 0.25 and 0, DA is inefficient in all simulated markets.
Neither sequential nor generalized MBP is satisfied.
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Figure 1: Share of markets where DA is efficient (green), the sequential MBP is satisfied
(blue), and GMBP is satisfied (red), as a function of δ and β

(a) λ = 1, α = 1 (b) λ = 1, α = 0.75

(c) λ = 1, α = 0.5 (d) λ = 1, α = 0.25
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Figure 1: Share of markets where DA is efficient (green), the sequential MBP is satisfied
(blue), and GMBP is satisfied (red), as a function of δ and β (continued)

(e) λ = 1, α = 0

Notes: Simulations for a school market with 1,000 students, 50 schools and school capacities of 20. Shares
are averages over 1,000 independent draws of variables (dis, vs, εis, gi, ηis), for a given value of the λ, α, β,
and δ parameters.

α takes high values. Figure 1 provides a closer look at this property. Specifically, Figure 1

maps, for specific values of (λ, α, δ, β), the proportion of markets, taken over the 1,000 draws

of (dis, vs, εis, gi, ηis), where DA is efficient and the sequential and generalized MBP conditions

are satisfied. Confirming the results in Table 3, we see that the proportion of markets such

that DA is efficient is highest when λ and α are equal to 1 (no idiosyncratic components

of preferences and priorities beyond match quality). Low values for δ (i.e. strong vertical

differentiation of schools) and high values for β (i.e. greater emphasis on match quality in

school priorities) fosters the efficiency of DA. A higher value of β allows school priorities to

“align” with preferences through the match quality, even when students value more factors

such as school quality than proximity in distance, and the GMBP condition is capable of

identifying most of these markets when DA is efficient.

6 Discussion

When is there a trade-off between efficiency and envyfreeness or, equivalently, when is there a

trade-off between preferences and priorities? Our results confirm the conjecture put forward

by Pathak (2016) according to which “correlation between preferences and priorities induced

by proximity may, in turn, result in less scope for Pareto-improving trades across priority
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groups that involve situations of justified envy. This pattern may then result in a small

degree of inefficiency in DA”, and clarify to which extent the conjecture holds and to what

extent it generalizes. Specifically, our Generalized Mutually Best Pairs condition maximally

captures the set of environments where priorities and preferences are sufficiently congruent

that DA is efficient, and there is no trade-off between efficiency and envyfreeness.

Our results shed light on the empirical evidence presented in Table 1. A small trade-off

was found in (primarily) elementary school markets with priorities to siblings, staff, and

some measure of distance (Boston, Ghent, New Orleans). The elementary school level is

exactly the education level where one would also expect parents to place greater emphasis

on proximity or selecting the same school as the older sibling. In other words, markets where

preferences and priorities are congruent. Such markets are well captured by the functional

forms in rows 2 and 3 of Table 2 and high values of λ and α in Table 3.

On the other hand, the secondary and high school markets of Budapest and New York

City, respectively, are characterized by a higher level of idiosyncratic school-specific prior-

ities and, presumably, a higher level of horizontal differentiation across schools (different

specialisation tracks). Our numerical results suggest that DA is less likely to be efficient in

such markets. The high level of justified envy found in the data suggests that the trade-off

between envyfreeness and efficiency might indeed be big in those school markets.

In our simulations, we found that preference and priority congruence, as captured by the

Generalized Mutually Best Pairs condition, covers a large fraction of the environments for

which DA is efficient. We nevertheless know from Example 3 that there can be situations

where preferences and priorities are not congruent and yet, DA is efficient. In Example 3,

this happened because, while preferences and priorities conflicted, students had sufficiently

different preferences that they could nevertheless get their first choice. Priorities were tooth-

less. This is reminiscent of Che and Tercieux (2019)’s finding that the main source of the

efficiency – envyfreeness trade-off (in their setting) is the excess competition for seats. It is

also perhaps not surprising that Example 3 also happens to be an example where the set of

envyfree allocations is not a singleton.

What lessons can policy-makers draw from our analysis? A first general lesson is to

understand their markets – what drives student preferences – and assess to what extent

school priorities are likely to be congruent with those, for the parts of the market where

there is excess demand. If this is the case, the choice of the algorithm is likely to be second

order. If not, extensive evaluation of different designs might be useful. A second lesson

is that they can use their discretionary power, when available, to increase the probability

that their markets meet the GMBP condition. An obvious example is the choice of the tie-

breaking rule when priorities are weak. Our results here echo Ashlagi and Nikzad (2020)’s

recommendation that popular schools use a single tie-breaking rule: fostering preferences
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and priority congruence is especially valuable for schools with excess demand.
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A Appendix

A.1 Description of the mechanisms

Student-proposing Deferred Acceptance (DA)

Step 1: Each student i proposes to the best school according to �i. Each school s provi-

sionally accepts the qs-highest ranked students, according to Ps, among those students that

have proposed to s, and rejects the others.

Step k: Each student i, who has not been previously accepted, proposes to the best school

according to �i, among those schools that have not yet rejected i. Each school s provisionally

accepts the qs-highest ranked students, according to Ps, among those students that have

proposed to s along steps 1 to k + 1, and rejects the others.
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The algorithm terminates at the step where no rejections are made and provisional ac-

ceptances become definitive by matching each school s to the set of students provisionally

accepted at this step.

School-proposing Deferred Acceptance (DA)

Step 1: Each school s proposes to the qs-highest ranked students according to Ps. Each

student i provisionally accepts the best school according to �i, among those schools that

have proposed to i, and rejects the others.

Step k: Each school s, which has been previously rejected, proposes to the next highest

priority students according to Ps up to capacity qs, among those students that have not yet

rejected s. Each student s provisionally accepts the best school, according to �i, among

those schools that have proposed to i along steps 1 to k + 1, and rejects the others.

The algorithm terminates at the step where no rejections are made and provisional ac-

ceptances become definitive by matching each school s to the set of students provisionally

accepted at this step

Top Trading Cycles (TTC)

Step 1: Each student i points to the best school according to �i. If no school is acceptable,

i points to sm+1 and is removed from the problem. Each school s points to the best student

according to Ps, and sm+1 points to all students.

Since the sets of students and schools are finite, there exists at least one cycle which is

of the form i1 −→ s1 −→ · · · −→ iK −→ sK −→ i1 or i←→ sm+1, where x −→ y means “x

points to y”.14 Each student i in a cycle is matched to the school s that they point to (if

i −→ s), in which case i and a seat in s are removed from the problem. If i points to sm+1.

They remain unmatched and i is removed from the problem.

Step k. Each remaining student i points to the best school according to �s, among the

schools that still have empty seats. Each school s with an empty seat, points to the best

student, according to Ps, among the remaining students, and sm+1 points to all of these

students. There is at least one cycle. Each student i in a cycle of the form i1 −→ s1 −→
· · · −→ iK −→ sK −→ i1 is matched to the school s that they point to, and i and a seat

in s are removed from the problem. If i points to sm+1. One remains unmatched and i is

removed from the problem.

The algorithm terminates when each student i is either matched to a school or to sm+1.

14There may be many cycles, although each student and school s 6= sm+1 can be part of at most one cycle.
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Immediate Acceptance (IA)

Step 1: Each student i proposes to the best school according to �i. Each school s accepts

the qs-highest ranked students, according to Ps, among those students that have proposed to

s, and rejects the others. Accepted students are definitive matched to the school. Schools’

capacities are reduced by the number of students accepted.

Step k: Each student i, who has not been previously accepted, proposes to the best school

according to �i, among those available schools that have not yet rejected i. Each school

s accepts the qs-highest ranked students, according to Ps, among those students that have

proposed to s, and rejects the others. Accepted students are definitive assigned to the

school.Schools’ capacities are reduced by the number of students accepted.

The algorithm terminates at the step where no rejections are made.
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