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Abstract

Wholesale electricity markets solve a complex allocation problem: electricity is not storable,

demand is uncertain, and production involves dynamic cost considerations and indivisibili-

ties. The New Zealand wholesale electricity market attempts to solve this complex allocation

problem by using an indicative price and quantity discovery mechanism that ends at dis-

patch. Can such a market mechanism without commitment provide useful information? We

document that indicative prices and quantities are increasingly informative of the final prices

and quantities and that bid revisions are consistent with information-based updating. We

argue that the reason why the predispatch market is informative despite the lack of commit-

ment is that it generates private benefits in terms of improved intertemporal optimization

of production plans.
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1 Introduction

Markets and prices play an important coordinating role in our economies. They direct producers

where there is demand, help consumers optimize, and, more generally, foster efficient allocation

of resources. This coordination role is especially crucial in wholesale electricity markets where

demand and supply are uncertain and largely inelastic in the short run, and yet, because

electricity is difficult to store, demand and supply must be balanced at all times to avoid

system outages.

Existing electricity markets typically solve this problem by organising a sequence of markets

(typically week-ahead, day-ahead, and real-time) to coordinate supply and demand. The mar-

kets gradually lock in demand and supply and reduce uncertainty for market participants. New

Zealand is an exception. The market is only called once, and all physical allocation decisions are

based on bids submitted one hour prior to dispatch. To nevertheless help market participants

coordinate supply and demand, the New Zealand electricity system operator organises a series of

indicative markets (called predispatch) starting 36 hours before dispatch where participants can

submit and update bids freely, and indicative prices and quantities are produced on a regular

basis. Only the last bids submitted are used for the final allocation.

Can markets without commitment, such as the New Zealand electricity market, foster efficient

price and quantity discovery? We examine bidding behaviour and bid revisions in the predis-

patch market. Our data spans 4 years and over 80,000 trading periods, each with a predispatch

market called 24 times before actual dispatch. We observe individual market participants’ bids

and revisions, indicative prices and quantities during predispatch, and final allocations.

We provide evidence that indicative prices and quantities are increasingly informative of final

prices and quantities and that bid revisions are consistent with information-based updating. On

average, 7% of generation is reallocated during predispatch as a result of these bid revisions.

Prices increase very slightly (less than 1%) and become less volatile over the course of the

predispatch. We provide suggestive evidence that the predispatch market facilitates generation

coordination across trading periods and therefore acts as a complement to the otherwise static

(single period) allocations produced by the New Zealand electricity market model.

The New Zealand predispatch market is an example of what is called an iterative mechanism, a

market organisation that allows participants to update their bids based on feedback about the

ongoing price before allocations are finalized. Iterative mechanisms are credited with at least

three advantages. First, iterative mechanisms facilitate and support participants’ decision-

making. Decisions typically take the form of whether to stay in or drop-out or adjust a bid at

the margin, and participants receive direct feedback on how their choices impact their allocation.

Second, iterative mechanisms elicit and aggregate private information, which can foster compe-

tition. This is the famous “linkage principle” first identified by Milgrom and Weber (1982) and

generalized to multi-unit auctions by Ausubel (2004). The insight here is that iterative mech-

anisms generate information that helps participants update their estimates of costs or value

and protect them from the winner’s curse, a phenomenon that typically holds back aggressive

bidding.
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A third advantage of iterative mechanisms is that they help market participants optimize their

allocation when the bidding language is not rich enough to capture underlying costs and prefer-

ences. Nisan and Segal (2006) have characterized the communication requirements of efficient

allocations in the presence of nonconvex preferences and indivisible goods. In electricity mar-

kets, these correspond to fixed start-up costs, ramp-up and ramp-down production constraints,

and unit commitment (see e.g. Reguant (2014) for evidence). Nisan and Segal (2006) show

that the number of prices needed, and therefore the complexity of the required bidding lan-

guage, grows exponentially with the relevant states of the world. Iterative mechanisms, which

run parallel markets for commodities that are related from the participants’ perspective, par-

tially overcome this curse of dimensionality (Ausubel and Cramton, 2004). They have been

used, for example, by EDF to auction generation capacity in France and by the US Federal

Communication Commission to auction spectrum.

Participants in electricity markets are typically sophisticated and well-informed. Moreover, the

level of market transparency in New Zealand is particularly high. So the first two advantages of

iterative mechanisms we have described are unlikely to be first order in the context of the New

Zealand electricity market. In contrast, Nisan and Segal (2006)’s findings imply, in particular,

that market participants in electricity markets should be able to condition their allocation in

one trading period on their allocation in some other trading periods, something that the New

Zealand market model does not allow. This provides a rationale for an iterative mechanism

such as the predispatch.

To support genuine price discovery, iterative mechanisms often include an activity rule designed

to curb manipulative bids. Participants can revise their bids but cannot make a “worse” offer

(where what “worse” means depends on the specific context). Alternatively, some mechanisms

include a random end-time that ensures that bidders are committed to their bids. What’s

remarkable about the New Zealand predispatch market is that it does not contain any such

form of commitment.1 This means that bids during the predispatch can be seen as “cheap

talk”.

Another example of iterative mechanisms without commitment are preopening periods at stock

exchanges. During preopening, traders submit and freely revise their offers during a certain

period, until the market is called and the produced price serves as the opening price for the

regular market. The existing literature documents that such markets are informative despite the

lack of commitment (see e.g. Biais et al., 1999, Cao et al., 2000, and Barclay and Hendershott,

2008). The reasons proposed all include a reduction in adverse selection due to either getting

access to a larger pool of liquidity at the opening of the regular trading day (Biais et al., 1999)

or information-sharing (Hong and Pouget, 2021).2

We too document that prices and quantities are increasingly informative of final prices and

quantities despite the lack of commitment. However, our proposed explanation for why this

happens has nothing to do with adverse selection, which is nonexistent in the New Zealand

1We will argue in Section 2 that forward markets in electricity do not provide a substitute for commitment
during the predispatch.

2This does not mean that commitment may not be valuable nevertheless (see e.g. the experimental evidence
reported in Biais et al., 2014).
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electricity market, but with the ability of iterative mechanisms to coordinate allocations across

several markets, in our case, across several trading periods. We document that virtually all

bid revisions involve several trading periods and provide examples illustrating how market

participants use the predispatch market to reorganize their generation dispatch across time.

Finally, a natural concern about the New Zealand predispatch market is that it may foster tacit

collusion, or at least facilitate the exercise of market power. Tacit collusion arises when market

participants coordinate on a less competitive equilibrium without explicit communication or

enforcement mechanisms. Markets with multiple equilibria are prone to tacit collision. Bolle

(1992) and Ausubel et al. (2014) show that markets, such as the New Zealand electricity market,

where participants submit supply functions typically have multiple equilibria. In such markets,

high levels of market transparency can help participants coordinate on the least competitive

equilibrium (see von der Fehr (2013) for a general argument, and Brown and Eckert (2022) for

evidence in the Alberta wholesale electricity market).

We make no claims as to the nature - collusive or not - of the equilibrium in the New Zealand

wholesale electricity market. After all, like most other electricity markets, the New Zealand

electricity market is characterized by a small number of participants, repeated interactions,

inelastic demand, and limited informational asymmetry, all conditions that are favorable to the

emergence of collusion, or at least tacit collusion.

However, our results do not provide any indication that the predispatch market facilitates

participants’ coordination on a high price equilibrium: prices barely rise over the course of the

predispatch and bid revisions are largely driven by new information arrival. Moreover, the exact

mechanism through which predispatch could incrementally support such coordination is unclear.

In a recent paper, Kamada and Kandori (2020) study what they call “revision games” where

players can update their actions repeatedly until the market is called. The predispatch market

can be seen as a revision game. They show that even a small probability of not being able to

upgrade their action (in our context, market participants missing the deadline for submitting

their bids) can help support coordination on a less competitive equilibrium. However, in their

setting, play evolves over time to an increasingly competitive outcome as players update their

actions. This is not borne out in our data: if anything prices increase very slightly (by less than

one percent) over the course of the predispatch.

In a separate paper (Bergheimer et al., 2023), we explore the impact of the reduced uncertainty

produced by the predispatch market on participants’ ability to unilaterally exert market power.

We find that the reduced uncertainty about residual demand facilitates the exertion of market

power by market participants and, in particular, by hydro-based generators, who can easily

reallocate their intraday production to take advantage of price differences.

2 The New Zealand predispatch market for electricity

The current organization of the electricity market in New Zealand is the result of the economy-

wide pro-market reforms that swept the country in the 1980s and 1990s. Before that, electricity
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production, transmission, distribution, and retail were all under public ownership and verti-

cally integrated. Transmission was separated early on through the creation of Transpower,

which today acts as the system operator. Between 1996 and 1999, the generating assets of

the monopoly generation company were progressively split to make way for five independently-

operated firms: Contact, Genesis, Meridian, Mighty River Power (now Mercury), and Trust

Power (now Manawa Energy). Distribution and retailing were also separated at that time, with

the five incumbent generation companies inheriting the retail business of the former electricity

monopoly.

The foundations for the electricity wholesale market were laid out in 1996. The design re-

lies on a single settlement (dispatch) market where energy and reserves are co-optimized on

the basis of the bids received by electricity producers and industrial consumers. The dispatch

algorithm maximizes the area between the demand and supply curves, taking physical con-

straints into account.3 Co-optimization means that dispatch may occasionally deviate from

the cost-minimizing dispatch when doing so reduces the cost of reserves. Prices are nodal, i.e.

location-specific, reflecting the geography of the country and the large transmission losses that

go with it.

Participation in the wholesale market is compulsory for all electricity producers and industrial

consumers, including vertically-integrated firms. Electricity producers are asked to submit

energy and reserve bid schedules, i.e. step functions that describe quantities offered at each

price, as well as maximal capacity and ramp-up and ramp-down constraints for each half-hour

(trading period).4 Bid schedules are specific to units or stations. Industrial consumers are also

requested to submit bid schedules. (For simplicity, we will use the term “bid” as short-hand

notation for bid schedule in the rest of the paper.)

The market is cleared for each trading period sequentially. This means that the only dynamic

consideration that the market model takes into account is ramp-up and ramp-down constraints

from the previous trading period. It is preceded by a predispatch market, that opens 36 hours

before dispatch, where indicative prices and quantities are generated using exactly the same

inputs and optimization model as for the final dispatch. Specifically, every 2 hours, Transpower

runs the model over a 72-period horizon (the so-called long schedule) and, every half hour, it

runs it over an 8-period horizon (short schedule). This means that, for every trading period, 24

indicative predispatch markets are run (initially at the frequency of once every two hours, then

once every half an hour) prior to final dispatch.

During the predispatch, market participants can update these bids at their will until “gate

closure” which happens one hour before dispatch (two hours before dispatch until June 28, 2017).

After gate closure, restrictions apply. Intermittent generators (wind) and industrial consumers

are expected to update their estimates of their generation and load after gate closure. Other

market participants - generators - can only update their bids in exceptional circumstances (e.g.

3Retail demand does not participate actively in the wholesale market. Forecast load is instead used when
producing dispatch instructions. Alvey et al. (1998) describe the model used for scheduling, pricing, and dispatch
(SPD) in detail.

4A bid schedule can have up to 5 price bands for generation bids, and up to 10 price bands for demand-side
bids.
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an unplanned outage) and can only change the quantity offered, not the price, starting from

the highest price band. Commitment is limited. Wind generators and industrial consumers are

never bound by their bids. Other generators are only committed by their last bids.

Real-time dispatch uses the latest load forecast, current generation, and the last submitted bids

during predispatch as inputs to the market model and generates dispatch instructions at the

frequency of once every 5 minutes.

The wholesale market is complemented by a voluntary hedge market, where market participants

take positions either on the Australian Security Exchange (ASX) (mostly) or in the over-the-

counter market. This hedge market operates on a very different time horizon. Around 97% of

traded contracts are monthly or quarterly contracts that cover all trading periods, or all peak

trading periods, in a given month or quarter. This means that this hedge market does not

provide a substitute for the lack of commitment in the predispatch market.

Market transparency is promoted at all stages. After each predispatch, price forecasts, load

forecasts and the aggregate supply curve at reference nodes are published. In addition, indi-

vidual market participants are informed about their cleared bids. The entire history of bids

and offers during predispatch and all inputs to the final dispatch and pricing are published

within two or three days. A website, WITS (which stands for Wholesale Information Trading

System), provides real-time information about the state of the market and operational con-

straints, including prices, load, generation, outages, transmission constraints and flows between

the North and South islands. Separate websites provide anonymized data on hedging positions

and information about hydro reserves.

3 Data

Our data span the period between 1 January 2014 and 30 September 2018. For each half hour

(trading period) and each node,5 we observe the bidding behavior of market participants during

the predispatch market, indicative prices and quantities generated by each predispatch, and final

prices and quantities.6,7 We additionally observe all public market-relevant information such as

installed capacity at all nodes, load forecasts, planned and unplanned outages for each node

and trading period, hourly regional weather realizations, and daily levels of hydro reservoirs.

Table 1 provides an overview of our bidding data and outcomes at different stages of the market.

By default, each generator and each industrial consumer must submit a bid schedule at the time

of the first predispatch round for all the nodes at which they are active. The top panel of Table

5With some slight abuse of language, we call a node, not only the physical injection or exit point on the grid
but every unique “node x bidding unit” observation. When two participants are active at a physical node, they
face the same price, but their behavior may still differ. Likewise, several generating units owned by the same
participant may be connected to the grid at the same physical node while submitting different bids.

6Transpower solves two versions of its program, one in which bids from industrial consumers are taken into
account as submitted (the so-called price-responsive schedule), and one where they are replaced by a vertical
demand at their maximum demanded quantity (non-responsive schedule). For the purpose of our paper, we use
the price-responsive schedules for the predispatch data.

7Predispatch data are missing for 2,083 trading periods (2.5%) so our final dataset covers 81,146 trading
periods. There is no indication of systematic bias in this censoring.
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Table 1: Bidding behavior and market outcomes during predispatch

# nodes 5% 25% 50% 75% 95%

Generation bids per trading period 77 1 1 3 5 11
Demand bids per trading period 34 1 1 1 2 6

Prices (NZ$/MWh)
First predispatch price 89 9.5 43.5 57.8 79.0 158.6
Last predispatch price 89 23.2 47.4 58.3 75.1 123.2
Change from first to last predispatch 89 -58.3 -13.5 0.1 14.1 44.2

Generation (MWh)
First predispatch quantity 89 3,392 3,966 4,797 5,307 6,061
Last predispatch quantity 89 3,386 3,964 4,781 5,289 6,043
Reshuffling from first to last predispatch 89 0.04 0.06 0.07 0.10 0.14

Industrial consumers (MWh)
First predispatch quantity 34 943 989 1,017 1,047 1,094
Last predispatch quantity 34 885 935 970 1,004 1,052
Change from first to last predispatch 34 -132 -81 -47 -15 27
Reshuffling from first to last predispatch 34 0.01 0.02 0.04 0.05 0.08

Notes: The unit of observation for bids is a trading period x node. Generation bids exclude bids from wind
units. Time stamps uniquely define bids. The unit of observation for prices and quantities is a trading period.
Nodal prices are quantity-weighted to produce an average price for the trading period. There are 81,146 trading
periods with complete coverage for predispatch prices and quantities between 1 January 2014 and 30 September
2018. Last predispatch prices and quantities use the last bids submitted and updated load and wind forecast at
the beginning of the trading period. Reshuffling refers to the sum of node-level absolute changes in quantities,
divided by two, and normalized by the total generation (resp. total industrial load) for that trading period.

1 shows that generation is the active side of the market during predispatch: bidding on the

demand side mostly sticks to the minimum level of activity, whereas the median producer

submits three different bid schedules for the same node and trading period over the course of

the predispatch.

The second panel of the table shows that prices go up by less than 1% over the course of the

predispatch and that their dispersion goes down.

The third panel documents generation. Aggregate scheduled generation barely changes over the

course of the predispatch (median change of 12 MWh, less than 0.25% of aggregate generation)

but, nevertheless, around 7% of generation is reshuffled, where reshuffling in a trading period

is defined as the sum of absolute node-level changes in scheduled generation between the first

and last predispatch, divided by twice total generation that trading period.

The last panel shows that industrial consumers account for approximately 20% of electricity

consumption. Their scheduled consumption does not change much over the course of the pre-

dispatch, and when it does, it mostly goes down, in line with the observation that submitted

demand schedules by industrial consumers adjust quantities downward for very high prices, but

are essentially vertical otherwise. About 4% of industrial load gets reshuffled over the course of

the predispatch.

Table 2 provides summary statistics for realized generation for each technology. Schedulable

hydro accounts for 55% of electricity generation on average. It is followed by geothermal and

gas (combined cycle), with 18% and 10% generation share, respectively.
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Table 2: Characteristics of realized generation, by technology

# % active nodes Generation (MWh) Gen. share

nodes off-peak peak Mean SD Min Max Mean

Coal 4 0.25 0.33 117.0 130.0 0.0 500.0 0.02
Cogeneration 8 0.92 0.94 200.0 42.0 40.0 374.0 0.04
Diesel 1 0.00 0.01 0.0 4.0 0.0 156.0 0.00
Gas, combined cycle 3 0.62 0.63 460.0 195.0 0.0 1,139.0 0.10
Gas, open cycle 5 0.14 0.38 87.0 98.0 0.0 391.0 0.02
Geothermal 12 0.94 0.94 798.0 64.0 0.0 888.0 0.18
Hydro, run of river 8 0.79 0.91 176.0 66.0 26.0 319.0 0.04
Hydro, schedulable 36 0.77 0.89 2,604.0 658.0 917.0 4,438.0 0.55
Wind 11 0.89 0.89 247.0 138.0 0.0 589.0 0.05

Notes: The unit of observation is a trading period (N = 81,146). A trading period is considered to be a peak
trading period when generation in that trading period belongs to the top 10 percentile of generation observed in
the sample. One generation node consisting of a battery is excluded.

Technologies differ in their production profiles. Given its importance in the New Zealand elec-

tricity mix, hydro generation is active both off-peak and on-peak (with a smaller proportion

of nodes active during off-peak time). Cogeneration and geothermal are two baseload tech-

nologies with little variation in generation levels and stable production patterns independent of

the time of the day, as witnessed by the stable fraction of nodes active both during peak and

off-peak times and the low standard deviation relative to mean generation. Wind generation

is highly variable, but its production profile is independent of the state of demand. Finally,

thermal production varies considerably and, except for combined cycle, increases during peak

times, reflecting their cost structure and the role that these technologies play in the electricity

generation mix.8

4 The role for a market

Economists since Hayek have valued markets, and the prices they generate, for their ability to

enable “rapid adaptation to changes in the circumstances of time and place” facing decentralized

economic agents (Hayek, 1945, p. 524). In this section, we quantify the residual uncertainty

about final allocations that prevails in the system 36 hours before dispatch. After all, if this is

minimal, there is little role for a market, be it with or without commitment. Central planning

would do.

One source of residual uncertainty stems from wind and load forecasts. The system operator

Transpower produces load forecasts for all nodes not participating in the wholesale market

(essentially retail nodes). These are used as inputs to the predispatch and dispatch models. In

addition, windmill operators have a bona fide obligation to submit accurate generation forecasts

and must update those at least once every 30 minutes within 2 hours of dispatch. Table 3 shows

that wind generation and load tend to be overestimated at the time of the first predispatch.

8The main economic difference between a combined cycle gas turbine and an open cycle gas turbine is their
cost structures, with open cycle gas turbines being more expensive to operate.
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Table 3: Load and wind forecast errors

5% 25% Median 75% 95%

Demand forecast errors (MWh) -230 -86 -11 60 218
Demand forecast errors relative to market size -0.05 -0.02 0.00 0.01 0.05

Wind forecast errors (MWh) -142 -61 -16 30 112
Wind forecast errors relative to market size -0.03 -0.01 0.00 0.01 0.02

Net forecast errors (MWh) -248 -93 3 96 274
Net forecast errors relative to market size -0.05 -0.02 0.00 0.02 0.06

Notes: The unit of observation is a trading period (N = 81, 146). Forecast errors for load are computed as
the difference between forecast load in the last and first predispatch. Wind forecast errors are computed as the
difference between the final forecast at dispatch time and the wind forecast for the first predispatch. The first
predispatch is used as reference to compute the relative numbers.

As these effects go in opposite directions, their net effect is symmetric around zero, with most

observations falling within 6% of the actual market size.

Other sources of uncertainty include short-run changes in production and transmission circum-

stances. To systematically explore how these, together with uncertainty about load and wind

generation, impact actual allocation of generation, we apply machine learning techniques to

predict prices and generation at each production node based on information available before

bidding starts. Any discrepancy between our best prediction and the observed allocation pro-

vides a measure of the residual uncertainty about final allocations that prevails 36 hours before

dispatch.

We consider two broad sets of models: LASSO penalized regressions and random forests. The

models include as predictors very much the same kind of information that Transpower uses to

predict load (weather, seasonal, week and hour-of-the-day variables, lagged dependent variables)

as well as node-specific information and system-level information about generation, such as

hydraulic information about reservoirs and outage status.9 Importantly, the model relies only

on information available 36 hours before dispatch. Generation and prices are predicted at the

node level. We focus on average predictions for prices due to higher volatility in prices. We

split the sample into training and testing observations and provide summary statistics on the

performance of predictions on the testing set.10

Table 4 summarizes the results from these prediction models. We compare the predictive power

of three models: forest (F), LASSO (L), and the first predispatch (P). The predictive power of

the models is evaluated based on the mean absolute errors (MAE) between the prediction and

the outcome of the final predispatch, root mean squared error (RMSE), and R2. To make the

9It is worthwhile to note that the exercise we carry out is different from the one that Transpower solves.
Transpower seeks to predict load, which it uses, together with the bids submitted by market participants, as
an input to the New Zealand electricity market model to pin down generation dispatch. What we are doing is
exploring to what extent we can bypass the market (i.e., participants’ bids) and predict final generation allocations
based on information available 36 hours before dispatch.

10Our training sample uses 20% random days. Lagged variables are generated before taking the training sample,
so that the random sample already contains all necessary variables. One aspect that departs from what one would
do in practice is that we train the model using a random draw of the entire period, i.e., from 2014-2018. As an
alternative approach, we could have more explicitly considered a model that only uses past data. In previous
iterations of the prediction model, we estimated some models for 2017 with only past data and we obtained
similar results.
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MAE and RMSE more comparable across technologies, we normalize the MAE and the RMSE

by the average generation of each technology.

The top panel describes the results for the quantity predictions for each technology. The results

indicate large differences across technologies in terms of predictability. Hydro, combined cycle

gas, and geothermal generation are highly predictable, as implied by the small MAE and RMSE,

and high R2. While hydro and combined cycle units adjust significantly during the predispatch

process, a large share of their generation can be predicted. Open cycle gas and wind generation

are less predictable, which is intuitive given that open cycle gas units tend to manage last-

minute changes in dispatch as a much larger share of their output and the fact that wind is

intermittent. For example, for open gas units the MAE can be as high as 45%. For wind, errors

are estimated to be around 20-30% of average production in the first predispatch, which are not

uncommon forecast errors for wind generation. The specification of random forests performs

better than LASSO for all technologies, with lower MAE and RMSE, and higher R2. Our

predictions also tend to outperform predictions produced by the first predispatch, particularly

the forest models.

The bottom panel summarizes the results for quantity-weighted prices at the island level. Prices

are less predictable than generation for most technologies, and the first predispatch can be

substantially noisier than a prediction model. This is in part due to the fact that the first

predispatch provides a first pass at the market dispatch, and firms re-adjust their bids, reducing

the volatility in prices, as already shown in Table 1.

While the predictions models can get an average prediction of market outcomes, there is still

substantial uncertainty. Furthermore, the first predispatch appears to be noisier. This suggests

that there is room for updating between the first and the last predispatch. While some of this

reallocation can be predicted, not all of it can. There remains a good amount of uncertainty

about final allocations 36 hours before dispatch. This provides a role for informative price

signals to further coordinate supply and demand.11 Comparing the numbers in Table 3 and

Table 4, this uncertainty is not limited to the aggregate level of generation needed (load and

wind uncertainty) but also to the allocation of generation across units.

5 Price and quantity discovery during the predispatch

In this section, we document the process of price and quantity discovery during predispatch.

We first show that predispatch prices and quantities are increasingly informative of final prices

and quantities. We then explore the extent to which predispatch prices reflect developments

inside the predispatch market rather than developments in the contemporaneous spot prices.

The findings support the hypothesis that information arises from the predispath market itself.

We then zoom in on bid revisions and document that (1) bid revisions are more frequent during

the short schedule part of the predispatch, and that (2) everything else equal, bid revisions

are more frequent when new information arises (wind and load forecast revisions, new outage

announcements).

11For another perspective on the value of markets to allocate electricity production, see Cicala (2022).

10



Table 4: Residual uncertainty about generation allocation and prices

MAE RMSE R2

F L P F L P F L P

Technology-level generation
- Hydro, run of river 0.07 0.10 0.12 0.10 0.13 0.18 0.95 0.92 0.86
- Hydro, schedulable 0.03 0.04 0.05 0.04 0.05 0.07 0.98 0.97 0.95
- Gas, combined cycle 0.07 0.14 0.12 0.10 0.20 0.21 0.97 0.89 0.87
- Gas, open cycle 0.29 0.45 0.45 0.43 0.61 0.74 0.87 0.74 0.65
- Geothermal 0.01 0.03 0.02 0.02 0.04 0.03 0.99 0.95 0.97
- Coal 0.21 0.42 0.34 0.34 0.58 0.66 0.92 0.77 0.72
- Wind 0.16 0.25 0.26 0.21 0.31 0.34 0.87 0.73 0.73

Average prices
- North Island 0.14 0.19 0.32 0.25 0.30 0.52 0.73 0.60 0.35
- South Island 0.15 0.20 0.33 0.24 0.30 0.63 0.78 0.66 0.33

Notes: F = forest predictions, L = LASSO predictions, P = first predispatch. The results only include testing
observations. MAE stands for mean absolute errors between the prediction and last predispatch, normalized by
mean quantities at the technology level, RMSE stands for root mean squared error, also normalized by mean
quantities. The top 0.1% observations with high prices (either final price or predispatch) are censored due to the
importance of outliers driving the R2 measure.

5.1 Convergence and increasing informativeness of predispatch prices and

quantities

The first part of our empirical exploration into price and quantity discovery in the predispatch

market builds on an approach first implemented by Biais et al. (1999) to study price discovery

in the preopening period of the Paris stock exchange.

Let qrnt denote the indicative quantity for node n at time period t produced during the rth

round of the predispatch, with the convention that q0nt is the best forecast based on information

available before the start of the predispatch.

For every predispatch round r, we regress the quantity revision over the entire predispatch on

quantity revisions up to round r:

q24nt − q0nt = αr + βr(q
r
nt − q0nt) + εrnt. (1)

If predispatch quantities are uninformative, then βr should be equal to zero. Conversely, if

predispatch quantities are informative, βr should be positive. If predictions are unbiased but

noisy, we would expect βr to be between zero and one. As predictions become more accurate,

βr should converge to one.12

Regressions are carried out separately for each predispatch round to account for the non-

stationary process of learning during the predispatch. We are thus comparing the same pre-

dispatch round, for different production nodes and trading periods. We run the equivalent

12Another way to see this is to rewrite (1) in the mathematically equivalent, but statistically less convenient,
equation q24nt = αr + βrq

r
nt + (1− βr)q

0
nt + εrnt. βr can then be interpreted as the weight of round r’s indicative

quantity in predicting final quantity.
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Figure 1: Evidence for quantity and price discovery
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(a) Quantity convergence β
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(b) Price convergence β

Notes: The figure displays the estimated βr coefficient and its 5% confidence interval for equation (1), and its
equivalent for prices, as a function of the predispatch round.

regressions for prices. As best forecasts based on information before the predispatch, q0nt and

p0nt, we use the forecasts produced by the random forest predictor from Section 4.

The top panel of Figure 1 reports the slope estimates for the quantity equation (1) and for the

North Island price equation (the results for the South Island are qualitatively similar). Consis-

tent with the hypothesis that the predispatch market generates information, the coefficient βr

increases over the course of the predispatch and reaches one by the end of the predispatch. The

estimated slope coefficient for the price equation remains low until the beginning of the short

schedule, suggesting that information aggregation is picking up only then. The slope for the

quantity equation increases steadily over the course of the predispatch.

Section 4 showed that residual uncertainty at the time the predispatch market opens differed

across production technologies. Production at combined cycle gas power plants and geothermal

stations could be predicted with little uncertainty, whereas residual uncertainty remained high

for production at open cycle gas turbines nodes. Figure 2 reports the result of running equation

(1) separately for four different technologies: schedulable hydro, run-of-river hydro, combined

cycle gas and open cycle gas. The results reflect the combination of the quality of the random

forests forecast, and the flexibility and exposure to last minute events of the specific technologies.

Specifically, the main difference between schedulable hydro and run-of-river hydro is that run-

of-river hydro is more dependent on short-run variations in river flows, leaving some generation

uncertainty until close to dispatch. Comparing Figure 2 (a) and Figure 2 (b) confirms that

quantity discovery indeed picks up later for run-of-river hydro than for schedulable hydro. In

contrast, there is little difference in the evolution of the estimated βr for combined and open

cycle gas turbines, except for the slightly later start of quantity discovery for open cycle gas

turbines. This may be due to both technologies being subject to similar operational constraints.

We will see later (Table 7) that the time horizon of bid revisions is similar for both technologies.

12



Figure 2: Quantity discovery differences across technologies
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(a) Hydro, Schedulable
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(b) Hydro, Run of River
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(c) Gas, Combined Cycle
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(d) Gas, Open Cycle

Notes: The figure displays the estimated βr coefficient and its 5% confidence interval for equation (1) for a range
of technologies.
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5.2 Parallel markets and contribution to price and quantity discovery

A challenge when studying markets where identical or similar assets are traded is the potentially

confounding effect of contemporaneous transactions in related markets. In our case, this takes

the form of spot market transactions, which are based on the last predispatch, happening at

the same time as earlier predispatch rounds for future trading periods. How can we know that

the informational role that we have documented is performed by the predispatch, rather than

the contemporaneous spot market, which involves commitment?

We examine the relationship between predispatch prices over time by regressing the quantity-

weighted predispatch price for a given round r and trading period t, prt , on previous lagged

predispatch prices for the same trading period, and the most recent spot market price, i.e., the

price of the trading period that has cleared right before the current predispatch round (and lags

thereof):

prt = α+ β11p
r−1
t + β12p

r−2
t + · · ·+ β21p

spot
τ(t,r) + β22p

spot
τ(t−1,r) + · · ·+ ϵrt ,

where pspott refers to the quantity-weighted spot price at trading period t and τ(t, r) gives the

time period for which the spot market just cleared when round r of trading period t is happening.

This means that such spot price is already known to market participants.13 It is important to

note that, by design, this spot price applies to a different hour of the day. Its defining feature

is that it will be financially settled, as opposed to just being indicative.

Due to the high degree of correlation between predispatch rounds, we also consider a differenced

model, in which the variables are first differenced in the regression.

Table 5 shows the results from the regression above. One can see in columns (1) and (2)

that predispatch prices are very well predicted by the prices in previous rounds while the spot

price is not nearly as important. This should not be surprising as we have already established

that predispatch prices converge. Columns (3) and (4) focus on the differenced model, which

more directly examines price updates in the predispatch market. Changes in spot prices are

only weakly correlated with changes in predispatch prices and the coefficients are not signifi-

cant, while lagged changes in predispatch prices are strongly correlated with current changes in

predispatch prices. This suggests that price discovery is indeed happening in the predispatch

market, independently of developments in the spot market.

The negative coefficients on lagged changes in predispatch prices shown in Table 5 are interesting

on their own. They suggest some kind of reversion to the mean where an increase in price in

one round is followed by a correction downwards, in the spirit of tâtonnement. Indeed, in the

data, we find that almost 50% of the time price changes occur in the opposite direction from one

round to the other. This suggests that prices in the predispatch market oscillate as information

is revealed.

13For example, at the 21st predispatch round for 4 pm in the afternoon, the last dispatch price at 2:00 pm has
just been revealed. This is what we call the spot price.
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Table 5: Predispatch price updates based on lagged predispatch and spot prices

Levels First Differences

(1) (2) (3) (4)

L.Weighted price 0.679 0.493 -0.338 -0.431
(0.022) (0.024) (0.019) (0.025)

L2.Weighted price 0.176 -0.226
(0.020) (0.016)

L3.Weighted price 0.100 -0.118
(0.010) (0.010)

Spot price 0.015 0.017 0.008 0.013
(0.014) (0.016) (0.008) (0.013)

L.Spot price 0.000 0.009
(0.000) (0.008)

L2.Spot price 0.000 0.004
(0.000) (0.004)

Constant 20.411 14.010 -0.303 -0.263
(1.713) (1.240) (0.069) (0.081)

Observations 1,841,258 1,672,969 1,756,867 1,589,409

Notes: The unit of observation is a trading period x predispatch round. The price is a quantity-weighted average
across nodes using final generation quantities. The spot price is a quantity-weighted average following the same
approach and represents the price of the last trading period that has cleared at the time market participants bid
in the market and will be financially settled. The goal of the regression is to separate “indicative” settlements vs.
settlements that involve commitment. Clustered standard errors at the trading period reported in parenthesis.

5.3 New information arrival and bid updates

The previous results have established that the indicative prices and quantities produced by the

predispatch market are increasingly informative and that this information is largely produced

by the predispatch market itself, rather than the contemporaneous spot market. In this section,

we zoom in on the bid revisions submitted by market participants since they drive the price

and quantity revisions that we observe during the predispatch market.

Market participants can submit a bid revision any time during the predispatch, up to gate

closure (conditions apply afterwards). A bid revision is characterized by a time stamp and the

identity of the market participant who submitted it. We focus on generation-side bid revisions.

We find that virtually all bid revisions involve several trading periods. Two thirds of bid

revisions involve several nodes.

Figure 3 shows the evolution of the number of bid revisions during the predispatch. Since

predispatch rounds last for different lengths, the numbers are normalized and expressed as the

percentage of nodes subject to revision per hour. The figure shows that the number of revi-

sions increases significantly after predispatch switches from the long schedule, when predispatch

rounds last two hours, to the short schedule, when predispatch rounds last half an hour (vertical

line). At the beginning of the predispatch, about 3% of node-level bids are revised every hour.

This increases to 11% when the predispatch switches to the short schedule. Bid revision activity

drops at gate closure, as constraints apply to bid revisions. Acceleration of trading activity close

15



Figure 3: Bid revision activity during the predispatch

Notes: The figure shows the frequency of node-level bid revisions, for a given predispatch round (mean in solid
line; 10 and 90 percentiles in dotted lines). The unit of observation is a trading period x predispatch round x
generation node. Wind generation nodes are excluded. Bid revision frequency is defined as the percentage of
nodes subject to a bid revision per hour. Vertical line at round 17, the round at which predispatch switches from
the long to the short schedule. Gate closure starts at round 20 until June 28, 2017 and at round 22 afterwards.

to the market end-time is also documented for preopening periods at stock exchanges (Biais

et al., 1999).

We next explore the determinants of bid revisions. Let yintr ∈ {0, 1} denote whether firm i

revises their bid for node n and trading period t during the rth round of the predispatch.14

Similarly, let yitr ∈ {0, 1} denote whether firm i revises any bid for trading period t in the rth

round of the predispatch.

We construct several measures of exogenous information arrival at the market and node level.

First, we measure changes, during the predispatch, in available generation capacity. For each

node, we define ∆Capacitynrt (∆ own capacity, in the table) as the absolute value of the change

in available capacity between round r − 1 and round r at that node (firm-level change in own

capacity is defined as the mean of the node-level absolute value changes). This information is

reported by participants alongside their bids. We use it as a proxy for unplanned outages.15

Likewise, we define ∆Capacity(−i)rt (∆ others’ capacity) as the changes between round r − 1

and round r in available capacity at nodes owned by other market participants, again measured

as the sum of nodel-level absolute changes. Second, we measure market-level revisions in net

load forecasts defined as the net change in load and wind forecasts between round r − 2 and

r−1 (Lagged ∆ net load). This information is available to participants when they bid in round

r.

Finally, we construct two measures for the market feedback received in the previous round. Let

∆qntr = |qr−1
nt − qr−2

nt | (Lagged ∆ quantity) describe the change in indicative quantity at node n

14By convention, we say that a market participant revised their bids in the rth round if they submitted a bid
revision between the time of the (r − 1)th and the rth predispatch.

15News about new and unplanned outages is available in real-time to all participants on the WITS system.
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Table 6: Determinants of bid revisions (linear probability model)

Node-level Firm-level
(1) (2) (3) (4) (5) (6) (7)

∆ own capacity 0.00461 0.00464 0.00317 0.03994 0.04052 0.02971
(0.00113) (0.00115) (0.00081) (0.00804) (0.00825) (0.00545)

∆ others’ capacity 0.00092 0.00128
0.00005 0.00012

Lagged ∆ net load 0.00004 0.00008
(0.00001) (0.00001)

Lagged ∆ quantity 0.00076 0.00064 0.00068 0.00058
(0.00013) (0.00010) (0.00061) (0.00047)

Lagged ∆ price 0.00011 0.00004 0.00015 0.00005
(0.00001) (0.00001) (0.00002) (0.00001)

Round-node FE X X X X
Round-firm FE X X X
Obs. (million) 132.7 132.0 126.3 126.3 20.7 19.8 19.8
Adjusted R2 0.02 0.05 0.05 0.26 0.15 0.15 0.38

Notes: The unit of observation is a trading period x generation node x predispatch round for node-level regressions
and a trading period x generation firm x predispatch round for firm-level regressions. At the firm level, a revision
is defined as taking a value of one as long as the bid schedule of one of its plants is revised. Wind excluded.
Standard errors clustered at the node level (specifications (1)-(4)), and at the firm level (specifications (5)-(7))
in parenthesis.

and trading period t from predispatch round r− 2 to predispatch round r− 1 (∆pntr is defined

analogously). A positive value for ∆qntr can be the result of a previous change in bids (between

round r − 2 and r − 1) or a change in market circumstances that leads the market model to

select another point on the market participant’s bid schedule at node n.16 The interpretation

for ∆pntr is similar and the two variables will tend to be correlated, except that, because bid

schedules are step functions, indicative quantities can change without indicative prices changing,

and vice versa. Firm-level changes in indicative price and quantity are defined as the average

of the node-level changes in price and quantity.

We run two sets of linear probability regressions, one at the node level and, because two-thirds of

bid revisions involve several nodes, one at the market participant level. Figure 3 shows that bid

revisions are more frequent in later stages of the predispatch. Additionally, some technologies

might be more prone to frequent revisions than others. Therefore, we control for round-node

(in node-level regressions) and round-market participant fixed effects (in firm-level regressions).

Table 6 summarizes the results. All coefficients are positive, as expected, and significant at the

1% level, except lagged own quantity change in specifications 6 and 7. Changes in the available

capacity of a market participant increases the likelihood that they revise their bids. Changes in

the indicative price and quantity at a node during the previous round are also associated with

an increased probability of submitting a bid revision for that node, but their explanatory power

16Brown et al. (2018) find that participants in the Alberta’s wholesale electricity market respond to rival offer
changes, as revealed by the local market authority’s historical trading reports.
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Table 7: Number of trading periods involved in a bid revision (node level)

# revs. 5% 25% 50% 75% 95%

Overall 5.76 1.0 3.0 6.0 15.0 48.0
- Coal 4.76 1.0 2.0 6.0 15.0 34.0
- Cogeneration 3.77 2.0 11.0 29.0 48.0 69.0
- Diesel 2.02 1.0 3.0 8.0 24.0 44.0
- Gas, combined cycle 4.66 1.0 3.0 9.0 23.0 45.0
- Gas, open cycle 2.74 1.0 3.0 8.0 21.0 48.0
- Geothermal 3.03 1.0 5.0 13.0 23.0 48.0
- Hydro, run of river 5.50 1.0 2.0 5.0 14.0 49.0
- Hydro, schedulable 6.29 1.0 3.0 5.0 12.0 48.0

Notes: The unit of observation is a node-level bid revision (timestamp x node). The first column reports the
average number of bid revisions per node and trading period. Note that we only include bid revisions that happen
during the predispatch, i.e., revisions submitted after the first predispatch. N = 980, 777.

is small. Finally, changes in competitors’ available capacity and changes in net load increase the

probability of a bid revision and these variables have a strong explanatory power as evidenced

by the increase in the adjusted R2. These results confirm that the predispatch market reacts

to new information.

6 Why does price and quantity discovery happen without com-

mitment?

So far, we have shown that market participants actively participate in the predispatch market

and that their revised bids contribute to making indicative predispatch prices and quantities

increasingly informative. In this section, we explore the possible private incentives for bid

revisions given the absence of commitment. After all, there is no reason for a market participant

to submit a bid revision if they do not privately benefit from it.

We already noted that essentially all bid revisions involve several trading periods. Table 7

provides a detailed breakdown of the number of trading periods involved in a bid revision, by

technology. The time span of bid revisions reflects the technical attributes of each technology.

For example, more than 25% of bid revisions for gas-powered thermal units involve at least

21 trading periods according to Table 7. This is close to the typical warm-up time for these

units, which is evaluated to be at around 10-12 hours. Coal-powered plants have faster start-

up times and bid revisions tend to involve fewer trading periods for this technology. Half of

the bid revisions for cogeneration involve at least 29 trading periods, presumably reflecting

the production constraints of the industrial process (paper and pulp, dairy, ...) paired with

electricity generation. At the other extreme, 75% of bids for schedulable hydro involve less than

12 trading periods (6 hours).

Unlike most other electricity markets, including the Continental West European (CWE), the

Iberian and Nordic markets in Europe, and PJM, California, and Colombia in the Americas,

the New Zealand wholesale electricity market does not allow market participants to express
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Figure 4: Evidence for intertemporal optimization

Notes: The figure shows an example of scheduled generation over the course of the day (48 trading periods) for

the Huntly coal power station. One can observe that Unit 2 changes its schedule to improve its ramping profile

over the course of the predispatch market.

preferences over intertemporal production profiles.17 Prices and quantities are set for each

trading period sequentially. The only dynamic consideration taken into account is ramp up and

ramp down constraints from the previous trading period.

This means that the predispatch market, and the indicative prices and quantities it produces, is

the only mechanism through which generation units are able to optimize their production profile

over time. Specifically, whenever Transpower calls the market, it produces indicative prices and

quantities for 8 (during the short schedule) or 72 (during the long schedule) consecutive trading

periods. Market participants can then get a good sense of the forecast generation schedule of

their plants over this time horizon, in the absence of further changes. The prices and aggregate

supply curves generated in the process also give them an indication of how to adjust their bids to

change their forecast generation schedule, if desirable.18 This will of course not guarantee that

they will secure the desired schedule since prices and quantities are not final, but the probability

that it does steadily increases over the course of the predispatch, given the convergence we

have documented. Such benefit of iterative mechanisms has been emphasized by Ausubel and

Cramton (2004) among others.

Figure 4 provides one example of intertemporal reallocation of production over the course of

17These can take the form of a minimum revenue requirement as in the Iberian market (Reguant, 2014), explicit
fixed costs bids in addition to “simple” bids as in the Colombian market (Balat et al., 2022), block and linked
orders and other multi-period contingent bids (Tirez et al., 2012) as used in the CWE area.

18For example, a market participant who is allocated a time-varying schedule of production, based on the
current predispatch results, might want to adjust their bids to smooth out their production level and avoid costly
short-run changes in generation.
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the predispatch. It shows the evolution of scheduled production on January 13, 2016, for the

first and second coal units at Huntly, a station located on the North Island and operated by

Genesis. At the first round of the predispatch, the second unit was on only for 10 hours of the

day, starting at trading period 28 (1:30 pm). By the end of the predispatch, it is committed for

a longer period, a useful property given the ramp-up costs of such units.

To provide a more systematic assessment of the presence of improved intertemporal allocation,

we construct two measures of dynamic efficiency at the day and technology level. First, we

define the number of daily startups as follows:

Startuprd,tech =
∑

n∈tech
1{qrndt>0 & qrnd,t−1=0},

where r refers to the predispatch round, n is a node belonging to a technology tech, d is a

day, and t is a trading period. Everything else equal, a day with fewer startups will tend to

be dynamically more efficient. Second, we define a measure of ramping, i.e., the change in

quantities from one trading period to the next. Thermal power plants have additional costs

from quickly changing their output, and therefore, we consider our ramping to be quadratic in

output changes:

Ramprd,tech =
∑

n∈tech

∑
t∈TP

(qrndt − qrnd,t−1)
2

Figure 5 shows evidence consistent with dynamic efficiency improving over the course of the

predispatch market. Panel (a) shows that the number of coal start-ups decreases from the first to

the last predispatch. Due to the large startup costs of coal power plants (Wolak, 2007; Reguant,

2014; Gowrisankaran et al., 2023), the reduced number of startups can reduce operational costs.

Panel (b) shows that the output in the last predispatch is also less subject to ramping costs.

Panels (c)-(d) show the same patterns, albeit less stark, for combined cycle gas units. As Table

2 indicated, these units were largely used as baseload during our sample period, explaining the

low number of start-ups and the little change thereof.

As a point of comparison, panels (e)-(f) show the value of our dynamic efficiency measures for

schedulable hydro. Schedulable hydro adjusts production during the day, with several nodes

going from zero to positive production on a daily basis, as shown by the number of startups.19

Contrary to the thermal plants, there is no discernible difference between the first and last

predispatch. This is intuitive as ramping constraints and dynamic costs are not as relevant for

schedulable hydro.

Improved intertemporal allocation of production is clearly a private benefit. To materialize

it requires informative prices and quantities, so market participants have a collective interest

in the quality of the predispatch. When a market participant revises their bids, they are

not only optimizing their own production but also improving information for other market

participants. In turn, more informative prices provide an incentive for market participants to

use them to update their bids, thereby creating a virtuous cycle. This provides a rationale

19Note that there are 36 schedulable hydro nodes and, therefore, the number of daily startups can be quite
high.

20



Figure 5: Measures of dynamic efficiency over the course of the predispatch market

(a) Coal Startups (b) Coal Ramp

(c) CCGT Startups (d) CCGT Ramp

(e) Schedulable Hydro Startups (f) Schedulable Hydro Ramp

Notes: The figure shows how alternative measures of dynamic efficiency evolve between the first and last predis-
patch. The unit of observation is a day x technology pair. Startups are measured as the daily number of startups
for units of a given technology. Ramps for each node are measured as the sum of squared changes in output from
one trading period to the next. This number is then aggregated at the technology level.
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for the observed active participation in the predispatch market and its informativeness, despite

the lack of commitment. Note, however, that the level of bid revisions that we observe, and

therefore the level of price informativeness, may not be optimal, given that bid revisions produce

a positive externality.

7 Concluding comments

Wholesale electricity markets are notoriously incomplete (Wilson, 2002). Existing market de-

signs are all pragmatic attempts to solve the complex allocation that electricity production and

dispatch entail. The New Zealand electricity market is no exception. Its distinguishing feature

is the use of a non-binding indicative predispatch market, before final allocations are decided.

Non-binding iterative markets are uncommon: preopening periods at stock exchanges and ini-

tial public offerings (IPOs) seem to be the other two examples. They raise the concern that

participation is uninformative at best, manipulative at worst. We show that bid revisions in

the New Zealand market are motivated by new information arrival and that predispatch prices

and quantities are increasingly informative of final prices and quantities.

Our explanation for the informativeness of the predispatch market is that market participants

derive a private benefit from effective price discovery, in the form of improved intertemporal

coordination of production plans. This contrasts with the reasons given for the informativeness

of preopening periods at stock exchanges and IPOs which rely on asymmetric information and

adverse selection.

Could commitment nevertheless help? Introducing some form of commitment is on the agenda

of New Zealand policy-makers. It is motivated by the observed increasing frequency of peak

periods when offered generation is tight relative to load (despite otherwise sufficient installed

capacity), and the perception that this arises because the financial incentives for keeping thermal

generation capacity “warm” for the probable event that it may be needed have decreased in the

context of higher fuel and carbon prices and increased wind penetration that makes prices more

difficult to predict. The proposed solutions include measures to improve the accuracy of wind

generation forecasts, predispatch market feedback based both on predicted load (like today)

but also on load forecast sensitivity cases, and the introduction of commitment in the form of

a hours-ahead market that would lock in parts of the supply and demand 8 hours or so before

dispatch (Electricity Authority, 2023).

Our results provide two insights into this question. First, our argument that there is a virtuous

cycle at play in the predispatch market implies, by the same token, that any external measure to

improve the informativeness of the resulting price signals will strengthen the incentives of market

participants to use the predispatch market to convey information about their production plans,

thereby further improving the informational value of the predispatch. Second, the intertemporal

nature of market participants’ optimisation problem that we have documented suggests that

careful attention should be paid to the way commitment is introduced unless some form of

multiperiod bidding is introduced.

22



Our paper has documented the efficiency benefits of information in terms of improved production

scheduling. The flip side of information is that it also increases the market participants’ ability

to exert market power. We turn to this question in our follow-up paper (Bergheimer et al.,

2023).
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