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Abstract. We use a simple graphical approach to represent Social Welfare
Functions that satisfy Independence of Irrelevant Alternatives and Anonym-
ity. This approach allows us to provide simple and illustrative proofs of May’s
Theorem, of variants of classic impossibility results, and of a recent result on
the robustness of Majority Rule due to Maskin (1995). In each case, geometry
provides new insights on the working and interplay of the axioms, and suggests
new results including a new characterization of the entire class of Majority
Rule SWFs, a strengthening of May’s Theorem, and a new version of Maskin’s
Theorem.

1 Introduction

In this paper we use a simple graphical approach to represent Social Welfare
Functions (SWFs) that satisfy Independence of Irrelevant Alternatives and
Anonymity. Using this representation we provide new, simple and illustrative
proofs of classic results in social choice like May’s Theorem and variants of
impossibility results like Arrow’s, Wilson’s and Saari’s Theorems. We also use
the approach to provide a new and simple proof of a recent result on the
robustness of Majority Rule due to Maskin (1995).

This paper makes two contributions. The first one is pedagogical. The
abstractness of social choice is due, in no small part, to the fact that it is
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di‰cult to visualize objects like the set of all binary relations satisfying cer-
tain properties. The approach used here provides a simple graphical repre-
sentation for these objects. Using this geometry we provide new insights on
the workings and interplay of the axioms that generate these well known
results.

The second contribution is to use the graphical representation to derive
new results. In particular, we derive (1) an axiomatic characterization for the
entire class of majority rule SWFs, (2) a modified May’s Theorem that pro-
vides a tighter characterization of Majority Rule, and (3) a new result on do-
main restrictions.

This is not the first paper to use a graphical approach to social choice.
Donald Saari (1994, 1995) has made extensive and very productive use of
graphics in his books Geometry of Voting and Basic Geometry of Voting. In
fact, the simplex and truncated cube representations that we use are due
to him. The di¤erence between this paper and Saari’s is that we use the
method to address di¤erent questions. Blackorby et al. (1990) have also pro-
vided a graphical analysis of Arrow’s Theorem. Their approach is based
on Pareto Indi¤erence, whereas ours is based on Anonymity. Note that in
both cases, to be able to use graphs, one needs to strengthen one of Arrow’s
conditions.

2 A graphical representation of SWFs on the simplex

Let A be the set of agents and X the set of alternatives. A preference profile for
this society is a mapping r : A!WðXÞ, where WðXÞ is the set of all weak
orderings over X.1 A Social Welfare Function (SWF) is a function R : D!
WðX Þ that maps preference profiles in the domain DJWðX ÞA into social
preferences. Thus, we write aRðrÞb whenever, according to the SWF, a is so-
cially at least as good as b at the profile r. Let PðrÞ and IðrÞ denote the strict
and indi¤erence preference relations derived from RðrÞ.

In this paper we study SWFs that satisfy Anonymity2 and Independence
of Irrelevant Alternatives (IIA).3 These two conditions simplify the structure
of a SWF considerably and are at the core of the graphical representation that

1 A weak ordering is a complete, reflexive and transitive binary relation.
2 A SWF satisfies Anonymity if it is invariant to permutations of the individuals’
labels; i.e., for any permutation p of A, and any profile r, we have that

Rðr � pÞ ¼ RðrÞ:
3 Let rjfa; bg denote the restriction of preference profile r to the pair of alternatives
fa; bg. Define Rjfa; bg analogously. A SWF satisfies IIA if, for any alternatives a and b,

and profiles r and r̂r, we have that

rjfa; bg ¼ r̂rjfa; bg ) RðrÞjfa; bg ¼ Rðr̂rÞjfa; bg;
i.e., the social ranking between a and b depends only on how individuals rank these two
alternatives.
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we use. In particular, together they imply that the social ranking between any
two alternatives a and b, Rjfa;bg, is fully determined by three numbers: (1) the
fraction of the population that prefers a to b, (2) the fraction that prefers b to
a, and (3) the fraction that is indi¤erent. Let mrða 
 bÞ denote the fraction of
the population preferring a to b at profile r, and definemrðb 
 aÞ andmrða@ bÞ
analogously. Since mrða 
 bÞ þmrðb 
 aÞ þmrða@ bÞ ¼ 1, these three num-
bers can be represented as a point in the 3-dimensional simplex. This is illus-
trated in Fig. 1. We refer to the points in the simplex as reduced profiles be-
cause they contain all the information that is relevant to characterize the
social ranking between a and b.

We assume that society consists of a finite number of agents. In this case,
only a grid of points in the simplex corresponds to profiles in the domain of
the SWF.4 This is illustrated in Fig. 2 for the case of three agents. In particu-
lar, with three agents mrða 
 bÞ, mrðb 
 aÞ and mrða@ bÞ can only take the
values 0, 1/3, 2/3, or 1. For any set of agents A, let DA denote the associated
grid. (To simplify the graphical analysis, we omit the grid from most pictures
and draw DA as the entire simplex.)

Summarizing, Anonymity and IIA imply that we can represent the ranking
that the SWF assigns to a and b as a function of the form Rjfa;bg : DA !
Wðfa; bgÞ. As a result, Rjfa;bg can be graphically represented as a partition of
DA into three types of regions: a region where a is socially preferred to b, a
region where b is socially preferred to a, and a region where a is socially indif-
ferent to b.

This representation, however, is still cumbersome because a full charac-
terization of the SWF requires drawing a simplex for every pair of alterna-

Fig. 1. Graphical representation of a SWF that satisfies Anonymity and IIA

4 All of the arguments in the paper can easily be extended, with appropriate measur-
ability assumptions, to the case of a continuum of agents; for example A ¼ ½0; 1. In
that case the entire simplex corresponds to profiles in the domain.
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tives. In some cases it does not matter because we are only concerned about
the properties of a SWF over an arbitrary pair (or subset) of alternatives. In
other cases Neutrality can come to the rescue.5 With Neutrality the name of
the alternatives does not matter. This allows us to represent the entire SWF
with a single simplex. To compare any two generic alternatives a and b, all we
need to know are the numbers mrða 
 bÞ, mrðb 
 aÞ and mrða@ bÞ. Further-
more, Neutrality implies that the SWF is symmetric with respect to the central
axis and that a must be socially indi¤erent to b along that axis. This is illus-
trated in Fig. 3. The SWF on the left satisfies Neutrality, the one in the right
does not.

Fig. 2. Domain for the case of aA ¼ 3

Fig. 3. Example of a SWF that satisfies Neutrality (left) and fails Neutrality (right)

5 A SWF satisfies Neutrality if for any permutation c of the alternatives we have that

Rðc � rÞ ¼ c � RðrÞ;
where c � r is the binary relation that is obtained by changing the labels of the alter-
natives according to the permutation c.
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3 Monotonicity axioms and the geometry of Majority Rule

In a classic paper, May (1952) showed that Majority Rule is the only SWF
that satisfies Neutrality, Anonymity, IIA, Positive Responsiveness (PR)6 and
Universal Domain.7 However, Majority Rule is only one of a large class of
SWFs that satisfy Neutrality, Anonymity, IIA, and Universal Domain. An-
other popular example is Strict Majority Rule.8 Under Strict Majority Rule,
aPðrÞb if and only if mrða 
 bÞ > 1

2. By contrast, under Majority Rule, aPðrÞb
if and only if mrða 
 bÞ > mrðb 
 aÞ. Fig. 4 provides a graphical representa-
tion of these two SWFs.

Given all of the structure that these four axioms impose on the SWF, it is
remarkable how they fail to discipline it: as long as the SWF is symmetric with
respect to the vertical axis, all kinds of crazy social rankings are permitted.
Figure 5 displays two extreme examples: Anti-Majority Rule, for which aPðrÞb
if and only if mrðb 
 aÞ > mrða 
 bÞ, and a SWF that allows for disconnected
regions of indi¤erence.

This suggests two natural questions: (1) What additional axiom or axioms
are required to rule out these types of crazy SWFs? and (2) How does the ad-
ditional axiom that characterizes Majority Rule di¤er from the ones that char-
acterize Strict Majority Rule and other plausible SWFs? As we will see, we

6 A SWF satisfies PR if for all alternatives a and b, and profiles r and r̂r, we have that
aPðr̂rÞb whenever (1) aRðrÞb and, for the move from r to r̂r, (2) a does not fall in anyone’s
ranking and (3) a rises in the ranking of at least one agent.

Note that with Anonymity the conditions for PR reduce to: (1) aRðrÞb, (2)
mr̂rða 
 bÞ þmr̂rða@ bÞbmrða 
 bÞ þmrða@ bÞ, and (3) mr̂rða 
 bÞbmrða 
 bÞ, with
at least one of these inequalities being strict.
7 A SWF satisfies Universal Domain if D ¼WðX ÞA.
8 In Collective Choice and Social Welfare, Sen discusses other variants of Majority
Rule (see Ch. 10.)

Fig. 4. Majority Rule (left) and Strict Majority Rule (right)
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can give simple and intuitive answers to these questions using the graphical
representation in the simplex.

What we need are additional axioms that determine what happens to social
preferences when an alternative becomes more popular. Consider the follow-
ing three variations on monotonicity axioms:9

Strong P-Mon. A SWF satisfies Strong P-Mon if for all alternatives a and
b and profiles r and r̂r, we that aPðr̂rÞb whenever (1) aPðrÞb, (2) mr̂rða 
 bÞþ
mr̂rða@ bÞbmrða 
 bÞ þmrða@ bÞ, and (3) mr̂rða 
 bÞbmrða 
 bÞ, with at
least one of these inequalities being strict.

Strong I-Mon. A SWF satisfies Strong I-Mon if for all alternatives a and b
and profiles r and r̂r, we that aPðr̂rÞb whenever (1) aIðrÞb, (2) mr̂rða 
 bÞþ
mr̂rða@ bÞbmrða 
 bÞ þmrða@ bÞ, and (3) mr̂rða 
 bÞbmrða 
 bÞ, with at
least one of these inequalities being strict.

Weak I-Mon. A SWF satisfies Weak I-Mon if for all alternatives a and b
and profiles r and r̂r, we that aPðr̂rÞb whenever (1) aIðrÞb, (2) mr̂rða@ bÞ ¼
mrða@ bÞ, and (3) mr̂rða 
 bÞ > mrða 
 bÞ.

All of these axioms state conditions under which a must be socially strictly
preferred to b when more people prefer a to b. The di¤erence between the ‘‘P’’
version and the ‘‘I ’’ version of the axioms has to do with the conditions under
which the axiom bites. P-Mon axioms only bite if we start from a profile r at
which a is socially strictly preferred to b. By contrast, I-Mon axioms provide

Fig. 5. Examples of SWFs that satisfy Anonymity, Neutrality, and IIA

9 A general definition of these axioms should in principle also include the additional
requirement that alternative a hasn’t fallen in anyone’s ranking (see Footnote 6.)
However, since this additional condition is made redundant by Anonymity, we work
with the simpler version.
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conditions under which social indi¤erence can be transformed into a strict
social preference.

The di¤erence between the strong and the weak version of the axiom is
illustrated in Fig. 6. It has to do with what type of movements in the domain
generate a strict social ranking. The axioms cover three di¤erent types of
movements: (1) direction A, which occurs when one agent switches from in-
di¤erence to strict preference for a, (2) direction B, which occurs when one
agent switches from strict preference for b to strict preference for a, and (3)
direction C, which occurs when one agent switches from strict preference for
b to indi¤erence. In the strong version of the axioms, a movement in any of
these three directions guarantees a strict social ranking. In the weak version of
the axiom, only a movement in direction B does.10

Now consider the relationship between these axioms and Majority Rule.
Using Fig. 4 it is easy to check that Majority Rule satisfies the three types of
monotonicity. Note also that PR is equivalent to Strong P-Mon and Strong
I-Mon. In fact, we can think of these two monotonicity axioms as a decom-
position of PR into more elementary parts. This is interesting because it allows
us to improve our understanding of the role that PR plays in May’s Theorem.

Modified May’s Theorem. A SWF satisfies Anonymity, IIA, Neutrality, Uni-

versal Domain, and Weak I-Mon if and only if it is Majority Rule.

Proof. It is trivial to check that Majority Rule satisfies these five properties.
Now, to prove that they imply Majority Rule it su‰ces to show that they imply
the graph for Majority Rule shown in Fig. 4 (left). Anonymity and IIA guar-
antee that we can use the simplex to represent the SWF. Neutrality guarantees
that one simplex is enough to fully describe the SWF. Universal Domain
implies that all the points in DA belong to the domain. Neutrality implies that

Fig. 6. Illustration of monotonicity
axioms

10 Other variations of I-Mon and P-Mon are possible. For example, we could define a
Monotonicity axiom that only applies to movements in the direction A.
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aIb along the central axis. Finally, Weak I-Mon implies that starting from the
central axis, any horizontal movement to the left generates aPb and any hor-
izontal movement to the right generates bPa. This yields exactly the graphical
characterization of Majority Rule. 9

This result provides a characterization of Majority Rule that is tighter than
May’s Theorem since Weak I-Mon is a weaker axiom than PR: PR implies
Weak I-Mon, but as shown in Fig. 7, the opposite is not true. In the SWF
depicted in the figure, aIb for all of the profiles on the curve, aPb to the left,
and bPa to the right. Starting at point s, PR implies that a movement to r
must yield aPðrÞb, which is not the case. Thus, this SWF satisfies Weak I-Mon
but not PR.

The reason why we can get a tighter characterization of Majority Rule is
that the di¤erence between the three monotonicity axioms disappears when
they are combined with the other axioms that characterize Majority Rule. This
is easily seen graphically. Because Neutrality imposes social indi¤erence for
all the profiles on the vertical axis, Strong I-Mon and Weak I-Mon become
equivalent: it does not matter that Strong I-Mon allows for more directions to
break social indi¤erence. In addition, as the proof illustrates, once IIA, Ano-
nymity, Universal Domain and Neutrality have been used, Weak I-Mon suf-
fices to describe completely the SWF: Strong P-Mon is no longer necessary.

So far we have seen that Weak I-Mon is a su‰cient additional axiom to
characterize Majority Rule. But, what about other SWFs of interest like Strict
Majority Rule? Using Fig. 4 it is straightforward to check that Strict Majority
Rule violates Strong and Weak I-Mon. In particular, Strict Majority Rule has
thick indi¤erence sets, but Strong and Weak I-Mon imply thin indi¤erence sets.
Indeed, look at all of the points that represent profiles for which mrða@ bÞ ¼ t.
This generates a horizontal line in the simplex with height t. Strong and Weak
I-Mon imply that there is at most one point in the line at which a is socially
indi¤erent to b.

Fig. 7. A SWF satisfying Weak I-Mon but
not PR
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This suggests that to provide an axiomatic characterization of Strict Ma-
jority Rule we need to find a monotonicity axiom that allows for thick indif-
ference sets. Since Weak I-Mon is too strong, consider the following weaker
version of the axiom:

j-Weak I-Mon. Let j : ½0; 1 ! ½0; 1 such that jðtÞb 1�t
2 for all t. A SWF

satisfies j-Weak I-Mon if for all alternatives a and b and all profiles r and
r̂r, we have that aPðr̂rÞb whenever (1) aIðrÞb, (2) mr̂rða 
 bÞ > mrða 
 bÞ, (3)
mr̂rða@ bÞ ¼ mrða@ bÞ, and (4) mrða 
 bÞb jðmrða@ bÞÞ.

j-Weak I-Mon is identical to Weak I-Mon except that it only applies on
a subset of the domain.11 In particular, a horizontal movement from r to r̂r
that raises a in the ranking of some agents (while keeping the number of in-
di¤erent people constant) is su‰cient to break social indi¤erence only if the
amount of agents who prefer a at r is large enough: mrða 
 bÞ must be greater
than jðmrða@ bÞÞ.

This is illustrated in Fig. 8. For the j function depicted in the figure, the
axiom bites at the profile s since msða 
 bÞb jðmsða@ bÞÞ, but not at r since
mrða 
 bÞ < jðmrða@ bÞÞ. Note also that for some profiles jðmrða@ bÞÞ lies
outside of the simplex. This just says that with mrða@ bÞ people indi¤erent
between a and b, no horizontal movement that raises a in the ranking of some
agents is su‰cient to break social indi¤erence.

The restriction jðtÞb 1�t
2 for all t is necessary to make sure that the axiom

is well defined. To see why, consider a profile for which mrða@ bÞ ¼ t. That

11 Because j does not depend on the alternatives under consideration, our definition
of j-Weak I-Mon introduces implicitly some Neutrality among the alternatives. How-
ever, it is easy to see how such a notion could be generalized. Furthermore, since in this
paper we use j-Weak I-Mon together with Neutrality, the distinction is unimportant.

Fig. 8. Illustration of j-Weak I-Mon
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profile lies in the vertical axis only if mrða 
 bÞ ¼ mrðb 
 aÞ ¼ 1�t
2 . If jðtÞ< 1�t

2 ,
as depicted in Fig. 9, the j curve that characterizes the area where social indif-
ference switches to social preference for a over b intersects with the right hand
side of the simplex (and the other way around for the j curve that determines
social preference for b over a.) Now suppose that we have social indi¤erence
along the profiles that lie on the curve j. Starting with the right curve, the
axiom implies that at any profile to the left of A we must have aPb. Similarly,
starting at the left curve, the axiom implies that at any profile to the right of B
we must have bPa. Clearly, this cannot be true. As long as jðtÞb 1�t

2 for all t,
the curves do not cross to the other side of the simplex and the contradiction
cannot arise.

It is easy to check from Fig. 4 that Strict Majority Rule satisfies j-Weak
I-Mon with jðtÞ ¼ 1

2. Nevertheless, this axiom is still not enough to fully char-
acterize Strict Majority Rule. The problem is illustrated in Fig. 10, where the
SWF satisfies j-Weak I-Mon for jðtÞ ¼ 1=2, but is not Strict Majority Rule.
The problem is that the axiom does not bite if there are no profiles r on the
curve j or to the left of it for which aIðrÞb.

To achieve a full characterization we need an additional axiom:

j-Indi¤erence. A SWF satisfies j-Indi¤erence if for all alternatives a and b and
all profiles r, we have that aIðrÞb whenever (1) mrða 
 bÞa jðmrða@ bÞÞ and
(2) mrðb 
 aÞa jðmrða@ bÞÞ, where j : ½0; 1 ! ½0; 1 and jðtÞb 1�t

2 for all t.

This axiom is very intuitive. Consider the horizontal line in the simplex
that corresponds to the profiles r with mrða@ bÞ ¼ t. As illustrated in Fig. 11,
j Indi¤erence says that a is socially indi¤erent to b for all the profiles that lie
between the left and right j curves. In other words, the axiom defines an indif-
ference set.

Fig. 9. Illustration of j-
Weak I-Mon
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The following lemma shows that adding j-Weak I-Mon and j-Indi¤erence
to our previous axioms is enough to fully characterize the SWF:

Lemma 1. Consider a SWF that satisfies Anonymity, Neutrality, IIA, Universal

Domain, j-Weak I-Mon, and j-Indi¤erence. Then for all alternatives a and b
and for all r,

aPðrÞb, mrða 
 bÞ > jðmrða@ bÞÞ

Proof. As before, Anonymity, Neutrality, IIA and Universal Domain imply
that we can fully characterize the SWF in the simplex. Neutrality implies that
the SWF is symmetric with respect to the vertical axis and that aIb for all pro-
files on that axis. So consider a profile r in the left hand-side of the simplex.
There are two possibilities (1) If mrða 
 bÞa jðmrða@ bÞÞ, then j-Indi¤erence
implies that aIðrÞb. (2) If mrða 
 bÞ > jðmrða@ bÞÞ, then (1) and j-Weak
I-Mon implies that aPðrÞb. The rest of the claim follows by symmetry. 9

Note that in order to obtain a full characterization of the SWF, the weak

Fig. 10. A SWF where j-Weak I-Mon
does not bite

Fig. 11. Illustration of j-
Indi¤erence
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monotonicity and indi¤erence axioms may have to use the same j. Let jwm and
ji denote the functions for the two axioms. Then, if jwmðtÞ > jiðtÞ for all t, the
SWF is not fully characterized at the profiles that lie between the two curves:
social indi¤erence and strict social preference are compatible with both axioms
for those points. Thus, if the grid DA is fine enough so that there are profiles
that lie between the two curves, the SWF is not fully defined. On the other
hand, if jwmðtÞ < jiðtÞ for some t, the two axioms may be incompatible.

These arguments establish the following axiomatic characterization of
Strict Majority Rule:

Theorem. A SWF satisfies Anonymity, Neutrality, IIA, Universal Domain, j-
Weak I-Mon, and j-Indi¤erence with jðxÞ ¼ 1

2 if and only if it is Strict Ma-

jority Rule.

It might seem that the characterization of Strict Majority Rule requires the
introduction of an additional axiom. This is not quite true. j-Indi¤erence is
implicitly present in the Modified May’s Theorem because, for jðtÞ ¼ 1�t

2 ,
Neutrality implies j-Indi¤erence, and Weak I-Mon is equivalent to j-Weak
I-Mon.

These axioms can also be used to provide a full and intuitive character-
ization of the entire class of majority based social welfare functions:

Generalized May’s Theorem. Every majority based SWF is fully characterized
by the axioms Anonymity, Neutrality, IIA, Universal Domain, j-Weak I-Mon,
and j-Indi¤erence.

In fact, the theorem suggests an intuitive definition of the class of majority
based SWFs. A SWF belongs to the class of majority based social welfare
functions if there exists a function j : ½0; 1 ! ½0; 1 with jðtÞb 1�t

2 for all t
such that, for all alternatives a and b and for all profiles r,

aPðrÞb, mrða 
 bÞ > jðmrða@ bÞÞ:

In other words, a majority based rule specifies a threshold jðtÞ such that,
whenever a fraction t of the population is indi¤erent between a and b, a can
be socially strictly preferred only if at least a fraction jðtÞ of the population
strictly prefers a.

We conclude the section with a final comment about uniqueness. As illus-
trated in Fig. 12, the j functions that characterize these SWFs are not uniquely
defined. With a finite number of agents two di¤erent j functions may charac-
terize the same SWF.

4 A graphical representation of SWFs on the truncated cube

In the next two sections we study the geometry of domain restrictions and
impossibility results. To do this we use another graphical representation that
allows us to look at the rankings over three alternatives at a time.

We restrict attention to the class of SWFs defined over a domain DJ
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SðXÞA, where SðX Þ is the set of all possible strict orderings over X.12 Let a; b
and c be any three alternatives. As before, we will look at SWFs that satisfy
IIA and Anonymity. This implies that the only relevant information for deter-
mining the social ranking among these alternatives is: (1) the fraction of the
population that prefers a to b, (2) the fraction of the population that prefers b
to c, and (3) the fraction that prefers c to a. As illustrated in Fig. 13, we can
represent this information by a point ðmrða 
 bÞ;mrðb 
 cÞ;mrðc 
 aÞÞ that
belongs to the unit cube in R3. Alternatives a and b are compared along the
x-axis, alternatives b and c are compared along the y-axis, and alternatives c
and a are compared along the z-axis. For example, the vertex with coordinates

Fig. 12. Characterization of a SWF with a
finite number of agents

12 A strict ordering is a complete, antisymmetric and transitive binary relation.

Fig. 13. The unit cube
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ð1; 1; 0Þ represents a profile r where everyone prefers a to b, b to c and a to c.
More generally, on the vertices of the unit cube all voters have the same ranking
over the three alternatives. At profiles corresponding to one of the faces of the
cube all the voters agree about the relative ranking over two alternatives. For
example, everyone prefers b to c for profiles on the upper face.

Not every point in the cube represents a valid profile in SðX ÞA. Consider,
for example, vertex V in Fig. 13 where everyone prefers a to b, b to c and c to
a, a clear conflict with individual rationality. This suggests that the domain of
any SWF is given by a subset of the unit cube.

Consider a profile r and suppose that mrða 
 bÞ þmrðb 
 cÞ > 1. Then
there are at least mrða 
 bÞ þmrðb 
 cÞ � 1 agents who prefer a to c at profile
r, i.e.,mrða 
 cÞbmrða 
 bÞ þmrðb 
 cÞ � 1. Using the fact thatmrðc 
 aÞ ¼
1 �mrða 
 cÞ, this provides an upper bound to the fraction of people who
prefer c to a:

mrða 
 bÞ þmrðb 
 cÞ þmrðc 
 aÞa 2:

Similarly, if mrðc 
 bÞ þmrðb 
 aÞ > 1, then at least a fraction mrðc 
 bÞþ
mrðb 
 aÞ � 1 of the agents must prefer c to a. This provides a lower bound on
mrðc 
 aÞ:

mrðc 
 aÞbmrðc 
 bÞ þmrðb 
 aÞ � 1:

Combining these two conditions we get that:

1 amrða 
 bÞ þmrðb 
 cÞ þmrðc 
 aÞa 2: ð1Þ

Condition (1) implies that the two tetrahedrons defined by the vertex V
and the origin O have to be removed from the valid domain. This defines the
truncated cube represented in Fig. 14.13 Note that the points on the truncated
surfaces satisfy condition (1) and so belong to the truncated cube. Also, with
a finite number of agents, only a grid of points corresponds to profiles in the
domain. We denote this grid in the truncated cube by CA.

The axioms that are commonly used in this literature have an interesting
graphical representation. Universal Domain (UÞ says that every point in CA
represents a valid preference profile. The Pareto Property (PP)14 implies a
strict social ordering between some alternatives on the faces and at the vertices.
For example, on the upper face b must be socially preferred to c. IIA implies
that all the profiles that lie in a plane perpendicular to the x-axis must yield
the same social ranking between a and b (since mrða 
 bÞ is the same every-
where). Similar restrictions apply for the other two axes. Finally, Neutrality
implies a strong form of symmetry with respect to the center of the cube. As
shown in Fig. 15, if aPb at the profiles represented by the point r, then bPa
at the profiles represented by points p, cPb at all the profiles represented by

13 Saari (1994 and 1995) uses the truncated cube to represent the outcome of specific
voting procedures.
14 A SWF satisfies the Pareto Property if society prefers a to b whenever every indi-
vidual prefers a to b.
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points s, etcetera. Similarly, aIb at the profiles that lie in the plane A, bIc in
the plane B, and aIc in the plane C.

5 The geometry of domain restrictions

The question of domain restrictions arises as a consequence of Arrow’s fa-
mous impossibility result. It studies the possibility of escaping the result by
relaxing the universal domain assumption. Let SðX Þ be the set of all strict
orderings over X. There are two ways to relax Universal Domain. First, we
can restrict the set of orderings that individuals can have but not the combi-
nations of profiles that can arise. In this case the domain restriction takes the
form DA, for some DJSðXÞ. Alternatively, we can place restrictions on the
combinations of individual rankings. In this case the domain restriction takes
the form D̂DJSðXÞA.

Although both approaches lend themselves to a graphical analysis in the
cube, in this section we focus mostly on the first approach. Specifically, we
provide a new and simple proof of a result on the robustness of Majority Rule
due to Maskin (1995). We also use the truncated cube to show that Majority
Rule is transitive on domains that satisfy value restriction (Sen 1966) and to
prove a new corollary of Maskin’s Theorem.

We start with some properties of the truncated cube that will be useful in
the analysis. Let X ¼ fa; b; cg and consider the six vertices of the truncated
cube denoted by Vi, i ¼ 1; . . . ; 6 (Fig. 16). Each vertex represents a unique
profile in which all of the agents have the same preferences. Therefore, we can
associate each vertex to an element of SðX Þ:

Fig. 14. The truncated cube
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SðXÞ ¼

a 
 b 
 c V1

c 
 a 
 b V2

b 
 c 
 a V3

c 
 b 
 a V4

a 
 c 
 b V5

b 
 a 
 c V6

8>>>>>>><
>>>>>>>:

:

Notice that V1;V2 and V3 correspond to the positive Condorcet cycle a 
 b 

c 
 a, and V4;V5;V6 correspond to the reverse cycle c 
 b 
 a 
 c.

Fig. 15. Neutrality in the
truncated cube

Fig. 16. Domain restric-
tions in the truncated cube
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Now suppose that people in society can have only one of two rankings
over fa; b; cg: a 
 b 
 c or b 
 c 
 a. It is easy to check that any such profile
is represented by a point on the line defined by the vertices V1 and V3. More
generally, take any subset D of SðX Þ. The set of all preference profiles when
individual preferences are restricted to D, DA, is represented by the convex
hull of the vertices that correspond to D (modulo the grid). For example,
SðXÞA, the set of all possible profiles for society, is represented by the convex
hull (modulo the grid) of the vertices V1;V2;V3;V4;V5 and V6, which is equal
to the truncated cube.

Consider the graphical representation of Majority Rule in the truncated
cube. Since under Majority Rule aPðrÞb, mrða 
 bÞ > mrðb 
 aÞ, this SWF
divides the cube into eight (possibly truncated) quadrants as depicted in Fig.
17. In each one of these quadrants the social ranking is well defined. For ex-
ample, in the lower-right-front quadrant aPb, cPb and cPa. It is easy to check
that six of these quadrants are compatible with social transitivity, but two are
not: the quadrant that has been removed (which faces the V1;V2;V3 simplex),
and the one that lies in the hidden corner of the cube. In other words, the do-
main over which Majority Rule is transitive corresponds to the profiles in the
truncated cube from which these two quadrants have been removed.15 In
particular, notice that domains that include profiles corresponding to the ver-
tices V1;V2;V3 and V4;V5;V6, associated with the Condorcet cycles, can be
problematic for Majority Rule.

15 Saari (1995) shows how profiles in SðXÞA can be easily retrieved from reduced
profiles in CA.

Fig. 17. Majority Rule in
the truncated cube
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We start with a graphical proof of the following well-known result:

Lemma 2 (Sen 1966). Suppose that the set of agents A is finite and odd.

Then, Majority Rule is socially transitive on any domain D A SðX Þ that satisfies
value restriction; i.e., on any domain D that does not contain fV1;V2;V3g or
fV4;V5;V6g.

Proof. First note that because there is an odd number of agents, there is no
profile with mrða 
 bÞ ¼ 1

2 for any fa; bg. Next, since there are only 6 vertices,
if D does not contain fV1;V2;V3g nor fV4;V5;V6g then aDa 4. If aD ¼ 4,
DA generates in the cube either (1) the convex hull of a side face with a vertex
on the opposite side, or (2) the convex hull of two diagonally opposite edges
(like V4 � V2 and V1 � V6). In each case, it is straightforward to see that these
areas do not intersect with the two quadrants where Majority Rule is not
transitive. Since there is no domain DA with aD ¼ 4 that intersects with these
areas, no domain D 0A, where D 0 satisfies the conditions of the theorem and
aD 0 < 4, will intersect either. 9

Maskin (1995) provides the following characterization of Majority Rule.
Define a voting rule F : SðXÞA ! BðX Þ as a mapping from strict preference
profiles to complete and reflexive (but not necessarily transitive) binary rela-
tions. A voting rule is said to be reasonable on a domain DJSðXÞ if it sat-
isfies Anonymity, Neutrality, IIA, PP and transitivity when individual prefer-
ences are restricted to D. His result reads as follows:16

Theorem (Maskin 1995). Suppose that there is a finite and odd number of agents.

If F is a reasonable voting rule on a domain D, then Majority Rule is also rea-

sonable on D. Moreover, if F is not Majority Rule, then there exists a domain

D 0 such that Majority Rule is reasonable on D 0 but F is not.

We first prove the following lemma:

Lemma 3. Suppose that there is a finite number of agents. There exists no rea-

sonable voting rule on D when D contains fV1;V2;V3g or fV4;V5;V6g.

Proof. We consider the case where D ¼ fV1;V2;V3g. The other case is proved
analogously. DA generates the simplex V1;V2;V3 in the cube (modulo the grid).
The proof proceeds in three steps.

Step 1. It cannot be that aIðrÞb for some profile r in DA and alternatives
fa; bg.

Suppose, towards a contradiction, that aIðrÞb when mrða 
 bÞ ¼ m. Consider
the profile t ¼ ðm; 1; 1 � mÞ, which belongs to the line joining V1 and V3. aIðtÞb
by construction, bPðtÞc by PP and aIðtÞc by Neutrality, a contradiction of
transitivity.

16 Dasgupta and Maskin (2000) generalize this result to a continuum of individuals.
The proof is similar.
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Step 2. We rule out any SWF that assigns the same social ranking for two or
more consecutive fractions (i.e., points in the grid).

Consider the largest set of consecutive fractions such that aPðrÞb for all

profiles with mrða 
 bÞ AM ¼ m 0;m 0 þ 1
aA ; . . . ;m

00 ¼ m 0 þ n
aA

n o
for n A N.

By Neutrality, we can assume without loss of generality than m 0 b 1
2. By

Neutrality also, we also know that bPðrÞc for all mrðb 
 cÞ AM. This defines
a subset of the simplex for which transitivity imposes aPc (see Fig. 18). But, as
shown in the figure, IIA implies that this restriction must hold for stretch M 0

of fractions mrðc 
 aÞ longer thanM. This contradicts the assumption thatM
was the longest such stretch in the first place.

Step 3.We rule out any SWF for which the social ranking over pairs of alter-
natives alternates from one fraction to the other.

Let m be a feasible fraction in
�

1
2 ; 1

�
and consider the two profiles s ¼

ðm; m; 2 � 2mÞ and t ¼ mþ 1
aA ; m� 1

aA ; 2 � 2m
	 


. Since the sum of the co-
ordinates in each case is equal to two, these two profiles belong to the
V1;V2;V3 simplex. Without loss of generality we can assume that aPðrÞb for
mrða 
 bÞ ¼ m (otherwise relabel the alternatives.) Then, by Neutrality, aPðsÞb
and bPðsÞc, and by transitivity aPðsÞc. Since the social ranking alternates from
one consecutive fraction to the next, aPðrÞb for mrða 
 bÞ ¼ m also implies
that bPðtÞa and cPðtÞb, so cPðtÞa by transitivity. This contradicts IIA. 9

This allows us to prove Maskin’s Theorem:

Proof. The first part is straightforward. Suppose that F is a reasonable vot-
ing rule on a domain D. By Lemma 3, D does not contain fV1;V2;V3g or
fV4;V5;V6g. Lemma 2 then implies that Majority Rule is transitive, and thus
reasonable on D.

Fig. 18. Proof of Lemma 2
(n ¼ 1 and aA ¼ 5Þ
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To prove the second part consider the domain D 0 ¼ fV2;V3;V4g which
generates the front face of the truncated cube. By lemma 2, we know that
Majority Rule is reasonable on this domain. Since F is not majority rule, there
exists m < 1=2 such that aRðrÞb at all profiles r with mrða 
 bÞ ¼ m. By Neu-
trality, bRðrÞc at all profiles r with mrðb 
 cÞ ¼ m. Now consider the profile
s ¼ ðm; m; 1Þ which belongs to the front face of the truncated cube. By con-
struction, aRðsÞb and bRðsÞc, so by social transitivity aRðsÞc. This contradicts
the PP. Thus, F cannot be reasonable on D 0. 9

The geometry exploited in the second part of the proof suggests an inter-
esting corollary to Maskin’s Theorem. In particular, the second part of the
proof shows that Majority Rule is the only reasonable SWF in a any domain
that satisfies value restriction and includes a complete face of the truncated
cube. By contrast, if the domain does not include a complete face, there may
be other reasonable SWFs. Consider, for example, D ¼ fV1;V3;V4;V5g that
defines a plane that cuts the truncated cube diagonally from top to bottom. It
easy to check that 2=3 Majority Rule is reasonable in this domain.

Corollary. Suppose that there is a finite and odd number of agents. ThenMajority

Rule is the unique reasonable voting rule on any domain that satisfies value re-

striction and contains a complete face of the truncated cube (modulo the grid.)

Proof. By Lemma 2 we know that majority rule is reasonable on these domains.
Uniqueness follows directly from the second part of the proof of the previous
theorem 9

The argument in the second part of the proof also illustrates the role that
aA odd plays in the result. With an even number of agents then the profile
s ¼ ð1; 1=2; 1=2Þ depicted in Fig. 17 belongs to the domain. By neutrality, at
that point we must have that bIc and aIc. Transitivity implies that aIc, which
violates the PP since s lies in the right face of the cube. Thus, there is no rea-
sonable SWF defined on the face of the cube with an even number of agents.

A natural question is whether the uniqueness result in the previous corol-
lary holds only on the faces of the cube. In this case the second part of Mas-
kin’s Theorem would be driven by an arbitrarily small subset of the domain.
(In fact, in the limit with a continuum of agents it would be driven by a set of
measure zero.)

To see this consider the class of Majority Rule SWFs in the domain SðXÞA.
By the Generalized May’s Theorem developed in Sect. 3, each SWF in this
class is fully characterized by a number j 0 A ½1=2; 1Þ that denotes the threshold
required to turn social indi¤erence into strict social preference.17 The SWFs
are represented in figure 20. It is easy to check that the SWF is transitive ev-
erywhere except for the darkened volumes in the center of the faces of the cube.
For example, transitivity is violated in the front dark area since under
j Majority Rule we must have cIb, bIa, and cPa. However, for j close to 1

17 Since individual indi¤erence is not allowed, we only need to characterize the SWF
at the base of the simplex; i.e., j 0 1 jð0Þ.
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(Unanimity) or for j close to 1=2 (Majority Rule) the volume of these areas
shrinks to almost zero, and to a set of measure zero in the limit case of a con-
tinuum of voters.18 This suggests that Majority Rule is the unique reasonable
SWF in an arbitrarily small part of the domain.

6 The geometry of impossibility results

In this section we use the truncated cube to provide a simple and intuitive
proof of Arrow’s Theorem and some of its variants. Again, we use geometry
to highlight how the impossibility results arise from the interplay of the dif-
ferent axioms. The usual statement of Arrow’s Theorem takes the following
form:

Arrow’s Theorem (standard version). If there is a finite number of voters and at

least three alternatives, then there is no SWF satisfying U, IIA, Non-Dictatorship

and the PP.

Since our graphical representation restricts us to anonymous SWFs, we
prove the following (weaker) version:

Arrow’s Theorem (with A). If there is a finite number of voters and at least three
alternatives, then there is no SWF satisfying U, IIA, Anonymity and PP.

18 Figure 19 illustrates a related result by Balasko and Cres (1997) who have studied
how the transitivity of super majority rule changes with the threshold j of the super
majority. They show that Condorcet cycles become rare events for super majority rules
larger than 53%.

Fig. 19. j Majority Rule in
the truncated cube
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Proof. Consider any set of three alternatives fa; b; cg. By U, the truncated
cube CA represents all the possible preference profiles over these alternatives.
Let m� be the smallest fraction of people preferring a to b for which social
preferences dictate aRb; i.e.

m� ¼ minfm j aRðrÞb for some r with mrða 
 bÞ ¼ mg: ð2Þ

By PP, m� is well defined. Without loss of generality, we can assume that
m� a 1

2 (otherwise just relabel the alternatives a and b.)
But now look, in Fig. 20, at the profiles that belong to the line LM in the

front face of the truncated cube. For all of these profiles we have aRðrÞb by
construction of m� and cPðrÞa by the PP (they lie in the front face of the cube.)
Thus, by transitivity of social preferences, cPðrÞb at any profile that lies in this
line. Given this, IIA implies that cPðrÞb at any point on or below the plane
(perpendicular to the y-axis) defined by mrðb 
 cÞ ¼ 1 � m�.

Now consider any two profiles represented by s ¼ ðm�; 1; m�Þ and t ¼
ð0; 1 � m�; m�Þ. The two profiles satisfy condition (1) and thus, as depicted in
Fig. 20, they belong to the truncated cube. Also, since they lie in the same
plane (defined by mrðc 
 aÞ ¼ m�), IIA implies that the social ranking between
a and c must be the same at both points. But at s, aRðsÞb by definition of
m� and PP implies that bPðsÞc. Thus, aPðsÞc. Similarly, at tcPðtÞb, since it
belongs to the horizontal plane, and bPðtÞa by the PP. Thus, cPðtÞa – a con-
tradiction. 9

Arrow’s celebrated result has been revisited many times and several alter-
native proofs have been provided, including very short ones like those recently
proposed by Geanakoplos (1996). The value of our proof is that it allows us to

Fig. 20. Graphical illustra-
tion of Arrow’s Theorem
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visualize how much structure is actually imposed by the combination of IIA
and transitivity of social preferences, and how the axioms interact to produce
the result.

Notice, in particular, that PP is barely needed in the proof: it is used to
define m� and in the last step when it comes to identifying profiles for which
bPc and bPa. This suggests that a relaxation of PP is possible. Two alterna-
tives have been explored in the literature:

Weak Involvement (Weak INV). For each pair of alternatives {a; bg, there
exist profiles, r and r 0, such that aRðrÞb and bRðr 0Þa.

Involvement (INV). For each triplet fa; b; cg, there exist at least two pairs of
alternatives for which the SWF is ‘‘onto.’’ (A SWF is ‘‘onto’’ for the pair fa; bg
if there are profiles r and r 0 in the domain such that aPðrÞb and bPðr 0Þa.19)

Wilson (1972) finds that Weak INV combined with IIA and U leaves the
possibility for a dictatorship, a reverse dictatorship20 or a null SWF.21 Saari
(1991) finds that INV combined with IIA and U only leaves room for a dic-
tatorship or a reverse dictatorship.

Since Saari’s INV condition only constraints social preferences along two
dimensions, this conditions seem weaker than Wilson’s Weak INV. However,
it is easy to prove that, when combined with IIA and U, Saari’s condition
implies Wilson’s. This shows that Wilson’s and Saari’s Theorems are closely
related. Formally,

Lemma 4. If a SWF satisfies U, IIA and INV, then it is ‘‘onto’’ for any triplet of

alternatives fa; b; cg.

Proof. Suppose, towards a contradiction, that cPðrÞa at all profiles r in the
domain. By INV, there exist profiles r 0 and r 00 such that aPðr 0Þb and bPðr 00Þc.
Consider a third profile r� such that r�jfa;bg ¼ r 0jfa;bg and r�jfb; cg ¼ r 00jfb; cg. By

U, r� belongs to the domain. By IIA and transitivity, aPðr�Þc. A contradic-
tion. 9

Using this fact, the truncated cube can also be used to provide a simple
proof of this extension of Arrow’s Theorem, with the caveat, of course, that we
impose Anonymity rather than Non-Dictatorship. Since Anonymity rules out
dictatorships and reverse dictatorship, and INV rules out Wilson’s null SWF,
the impossibility result takes the following form:

Wilson’s and Saari’s Theorem (with Anonymity). If there is a finite number of
voters and at least three alternatives, then there is no SWF satisfying U, IIA,

Anonymity and INV.

19 We could also require that there exists a profile r 00 for which aIðr 00Þb, but this is not
necessary.
20 In a reverse dictatorship, the social outcome is exactly the opposite of the dictator’s
strict preferences.
21 A SWF is null if aIðrÞb for all a; b and all r in its domain.
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Proof. Consider any set of three alternatives fa; b; cg. By U, the truncated
cube CA represents all the possible preference profiles over these alternatives.
As in the proof of Arrow’s Theorem, the strategy of the proof is to construct
two profiles for which the social ranking over a and c conflicts.

Suppose that there are fractions mab, mba, mbc and mcb such that aPðrÞb when
mrða 
 bÞ ¼ mab, bRðrÞa when mrðb 
 aÞ ¼ mba, bPðrÞc when mrðb 
 cÞ ¼ mbc,
and cRðrÞb when mrðb 
 cÞ ¼ mcb. Now consider two profiles of the form
s ¼ ðmab; mbc; xÞ and t ¼ ðmba; mcb; xÞ. If the profiles belong to CA we are done
since, by construction, aPðsÞb and bPðsÞc and hence by transitivity aPðsÞc.
Similarly, bRðtÞa and cRðtÞb hence cRðtÞa, which contradicts IIA since
msða 
 cÞ ¼ mtða 
 cÞ.

Thus, to conclude the proof we need to show that there are fractions mab,
mba, mbc; mcb, and x such that the two profiles belong to CA, that is:

1 a mab þ mbc þ xa 2 ð3Þ

1 a mba þ mcb þ xa 2 ð4Þ

Consider all possible fractions of the population 0; 1
aA ; . . . ;

aA�1
aA ; 1

n o
. By

U, these values correspond to possible values of mrða 
 bÞ for r in the domain.
By INV, starting from mrða 
 bÞ ¼ 0 and moving up along these fractions, the
social ordering over a and b must be switching at some point from aPb to bRa
(or the other way round). Hence, mab and mba can be chosen within 1

aA of each
other. The same reasoning applies for mbc and mcb. Therefore, the di¤erence
between mab þ mbc and mba þ mcb is of at most 2

aA. This means that there exists
x that satisfies both (3) and (4). 9

A comparison of the two proofs highlights the relative roles of PP and its
weaker counterpart, INV. In both cases the proof is centered around a viola-
tion of IIA. In particular, the strategy is to show that there is a plane defined
by mrðc 
 aÞ ¼ constant and two profiles that lie in that plane with di¤erent
social rankings over a and c. In Arrow’s proof PP is used to guarantee the
existence of the plane and the profiles. But clearly INV is enough.
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