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Abstract

Bidders’ asymmetries are widespread in auction markets. Yet, their impact on behavior and, ultimately,
revenue and profits is still not well understood. This paper defines a natural benchmark auction environment
to which to compare any private values auction with asymmetrically distributed valuations. The main result
is that the expected revenue from the benchmark auction dominates that from the asymmetric auction, both
in the first price auction and the second price auction. Moreover, for classes of distributions that lend them-
selves to a quasi-ordering of more or less asymmetric configurations, we prove that the expected revenue
is lower the more asymmetric bidders are. These results formalize the idea that competition is reduced by
bidders’ asymmetries. Applications to merger analysis, joint bidding and investment are discussed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Known ex ante asymmetries among bidders are widespread in auction markets. For instance,
firms with a toehold in the target firm are favored in takeover battles and this advantage is usually
understood by all potential buyers. In arts auctions, bidders’ tastes are known to be quite idio-
syncratic. Asymmetries among bidders have also been documented in procurement markets, with
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sectors ranging from the public works (Bajari, 1998) to the procurement of school milk (Porter
and Zona, 1999; Pesendorfer, 2000). In all these auctions, there was one or several firms with a
clear comparative advantage over the others.

In this paper, we focus on private values auctions, that is, auctions where at the time when
bidders submit their bids, they know how much they value the object they are bidding for.1

There have been recent advances in our understanding of how these auctions work when bidders’
distributions of valuations differ. Most importantly, we now know that an equilibrium exists under
quite general conditions in the sealed bid first price auction (Lebrun, 1996; Maskin and Riley,
2000a; Athey, 2001) and understand under what conditions it is unique (Maskin and Riley, 2003;
Lebrun, 1999).2

Nevertheless, the effect of asymmetries on the auctioneer’s expected revenue is still not well
understood. Maskin and Riley (2000b) have shown that the revenue ranking between the second
price auction and the first price auction depends generally on the kind of asymmetries among
bidders. In addition, we know that, in the presence of asymmetries, the first price auction is inef-
ficient (it fails to allocate the object to the highest valuer) and that both the first price auction and
the second price auctions are generally suboptimal (they fail to maximize the seller’s expected
revenue). However, these results shed little light on the impact of bidders’ asymmetries within a
single market institution: for instance, the first price or the second price auction.

In this paper, we are interested in understanding how (common knowledge) ex ante differ-
ences in bidders’ distributions of valuations affect their behavior and, in turn, expected revenue
and profits. A priori, how asymmetries affect the auctioneer is unclear. In the two auction formats
we consider, the auctioneer is the residual claimant of bidders’ strategic interactions.3 The com-
petition among bidders is what determines the winning price, and this is the auctioneer’s revenue.
When bidders’ valuations are asymmetrically distributed, bidders’ strategic adjustment to these
asymmetries will for sure affect the distribution of social surplus among the bidders and the auc-
tioneer. How so is less clear. In particular, Maskin and Riley (2000b) have shown that “strong”
bidders, that is, bidders who are more likely to have a high valuation for the object, prefer a sec-
ond price auction to a first price auction. This suggests that bidders’ attempts to take advantage
of their favorable positions might be self-defeating in the first price auction. This could benefit
the auctioneer.

To tackle this question, we define a benchmark auction environment to which to compare any
auction with asymmetric bidders. An important property of this benchmark is that the distribution
of the highest valuation among bidders is the same as in the original auction. In other words, we
shall be comparing two auction environments for which the potential social surplus is the same.
The question we ask then is: holding the “size of the pie” constant, how do asymmetries affect
the share of total surplus that the auctioneer is able to extract?

At a policy level, our analysis is motivated by the following questions. A procurement agency
is ready to sponsor cost reducing investments by potential suppliers. The cost reduction is sto-
chastic. For example, suppose as in Tan (1992), that the resulting cost for bidder i is distributed
according to the cumulative distribution function 1 − (1 − H(c))α0i+αi , where α0i > 0 is the
initial position, and αi is the level of investment by bidder i. Suppose furthermore that the unit
cost of investment is equal across bidders. Should the procurement agency spend its budget on

1 More precisely, opponents’ signals do not affect a bidder’s valuation for the object for sale.
2 In the second price auction, existence and uniqueness of the dominant strategy equilibrium do not depend on the

distributional assumption, so asymmetries do not introduce any difficulty.
3 In that sense, the auctioneer is in the same position as consumers in a oligopoly market.
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a single supplier? Or distribute it across all bidders? As a second example, suppose a firm is
considering two different partners for a potential merger. Can we a priori rank these two mergers
on the basis of their effect on prices? How does the answer to these questions depend on the
resulting market structure?

The main result of the paper is that asymmetries hurt revenue, both in the first price auc-
tion (FPA) and in the second price auction (SPA). This result is general in the case of the SPA
(Theorems 1 and 2). In the FPA, we obtain analytical results for three classes of distributional
asymmetries (Theorems 3–5).

In addition, for the classes of distributions for which a quasi-ordering of potential bidder
configurations is available (in the sense: “this configuration of bidder distributions is more
asymmetric than this other configuration”), we find that expected revenue is lower the more
asymmetric bidders are (Theorems 2 and 3). This includes the kind of asymmetries that arises
from mergers, joint bidding or collusion among homogeneous bidders (for example, Graham and
Marshall, 1987; Mailath and Zemski, 1991; McAfee and McMillan, 1992, for collusion models;
and Tschantz et al., 1997; Waehrer, 1999; Dalkir et al., 2000; or Waehrer and Perry, 2003, for
mergers).

Taken together, these results illustrate the decrease in the toughness of competition that market
heterogeneity induces, with the following implications for the questions we have raised. First, the
procurement agency should distribute its investment subsidies among bidders. It should do so to
generate the most symmetric market structure ex post, i.e. set α0i + αi = α0j + αj , if possible.
Second, the merger least harmful for consumer welfare is the one leading to the least asymmetric
market structure ex post.

In addition, the results provide some insights on how these specific auction markets work.
This is especially useful in the case of the first price auction where the lack of analytical solu-
tions has slowed down our understanding. In particular, the proofs of Theorems 3 and 4 develop
analytical techniques that leverage the structure imposed by equilibrium behavior in cases where
no analytical solution to the equilibrium is available.

The paper is organized as follows: the next section introduces the model and defines the
benchmark environment we will be using. Section 3 studies the equilibrium in the second price
auction. Section 4 deals with the first price auction. Section 5 discusses applications as well as
an alternative interpretation of the results. Section 6 concludes and suggests venues for future
research.

2. A symmetric benchmark

We consider an independent private values auction environment. There are N risk neutral
bidders and one object for sale through a sealed bid first price auction or a second price auction.
Bidders’ valuations are independently distributed with continuously differentiable cumulative
distribution functions Fi with support on [v i, v i], i = 1, . . . ,N , and positive density everywhere.
Valuations are private information but their distributions are common knowledge. Bidders are
risk neutral.

Given the selling procedure, the cumulative distributions of bidders’ valuations, (F1, . . . ,FN),
fully characterize the auction environment. We refer to (F1, . . . ,FN) as a configuration. A con-
figuration is asymmetric, or equivalently, bidders are asymmetric, if Fi(v) �= Fj (v) for some
i �= j and for a non-zero measure of valuations v.

In this paper, we want to understand how asymmetries affect the outcome in the first price
and second price auctions. One way of doing this is to compare the outcome in an asymmetric
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auction with that of a symmetric auction which, in some sense, we consider a natural point of
comparison given our questions and environment.4

What properties should this benchmark have? At a conceptual level, an auction is an allocation
mechanism. In the private values environment that we consider, the highest level of social surplus
(efficiency) is achieved when the object is allocated to the bidder with the highest valuation.
A property that seems reasonable to require is that the expected potential social surplus (“the size
of the pie”) is the same in both the original auction environment and the benchmark environment.
This provides a clear interpretation to the result whether revenue in the benchmark environment
is lower or greater than that in the asymmetric environment. Indeed, without this condition, we
would need to compare the ratios of expected revenue to social surplus in order to answer the
question of whether asymmetries hurt the auctioneer. Unfortunately, these ratios are not invariant
to cardinal changes to the environment.

This requirement is also consistent with the policy experiments we have in mind (distribution
of investment efforts, mergers, joint bidding), which change market structure but do not change
the potential social surplus in the economy. In fact, these policy experiments are consistent with
the stronger requirement that the distribution of potential social surplus be the same across con-
figurations.

With these considerations in mind, we introduce the following definition.

Definition 1. Given cumulative distribution functions (F1, . . . ,FN), their symmetric bench-
mark, F , is defined, for all v, by

F(v) =
(

N∏
i=1

Fi(v)

) 1
N

. (1)

In words, the distribution of valuations in the benchmark environment is the geometric average
of the distributions in the original environment. Note that F has support on [maxi v i ,maxi v̄i]
and is continuously differentiable on its support.

3. The effects of asymmetries in the SPA

In the SPA, the winner is the bidder who places the highest bid and he pays the value of the
second highest bid. It is well known that bidding one’s own valuation is a dominant strategy in
this setting. Hence, the expected revenue in configuration (F1, . . . ,FN) is equal to the expected
value of the second-order statistics of (F1, . . . ,FN). Let SF denote the cumulative distribution
function of the second-order statistics of (F1, . . . ,FN). Dropping the arguments, we have

SF =
N∑

i=1

[
(1 − Fi)

∏
j �=i

Fj

]
+

N∏
i=1

Fi.

4 We emphasize that any benchmark must depend on the question asked and the environment. For example, Kaplan and
Zamir (2002) have recently proposed another benchmark to study asymmetric private values auction. Their benchmark
is best suited to answer the following question: suppose the auctioneer has information about the identity of the bidders
taking part in the auction (and knowing the identity of a bidder is useful to forecast his/her willingness to pay). Should
he reveal this information to the bidders (among others, making them realize the potential asymmetries among them)?
Or, should he keep, so to say, all bidders in an equally uninformed state?
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Consider a second configuration (G1, . . . ,GN), and denote by SG, the cumulative distribution
function of its second-order statistics. Suppose that

∏
i Fi = ∏

i Gi . Then

SF − SG =
N∑

i=1

∏
j �=i

Fj −
N∑

i=1

∏
j �=i

Gj . (2)

Let Rs(F1, . . . ,FN) and Rs(G1, . . . ,GN), the expected revenue in the dominant strategy
equilibrium of the SPA for configurations (F1, . . . ,FN) and (G1, . . . ,GN), respectively. The
results of this section rely on being able to sign this expression. If we can show that SF (v) −
SG(v) � 0 for all v, sometimes with strict inequality, then Rs(F1, . . . ,FN) < Rs(G1, . . . ,GN)

follows.

Theorem 1. Consider any asymmetric configuration of bidders (F1, . . . ,FN) and its symmetric
benchmark (F, . . . ,F ). Then Rs(F1, . . . ,FN) < Rs(F, . . . ,F ).

Proof. Letting (G1, . . . ,GN) in (2) be equal to (F, . . . ,F ), we have

SF − SG =
∑

i

∏
j �=i

Fj − NFN−1. (3)

We want to show that this expression is positive for all v. Note that the support of SG is
[maxi v i ,maxi v̄i]. Thus, for v � maxi v i , SF (v) − SG(v) � 0. For v > maxi v i ,

∏
i Fi(v) > 0.

Dividing the expression in (3) by N
∏

i Fi yields:

1

N

∑
i

1

Fi

− 1

F
.

Because the geometric average is always smaller than the arithmetic average, and strictly so
unless all elements are equal, this expression is strictly positive. Thus SF (v)−SG(v) � 0 for all v

(strictly so for some v when the original configuration is asymmetric) and Rs(F1, . . . ,FN) <

Rs(F, . . . ,F ). �
Theorem 1 has two direct implications:

Corollary 1. The distribution of revenue in the symmetric benchmark first order stochastically
dominates the distribution of revenue in the asymmetric auction.

Corollary 1 follows directly from the fact that we proved Theorem 1 by showing that SF (v) �
SG(v) (sometimes strict).

Corollary 2. In the second price auction, bidders’ ex ante aggregate payoffs from the asymmetric
auction (F1, . . . ,FN) always dominate that from the symmetric benchmark.

Corollary 2 follows from the efficiency of the SPA and Theorem 1. Given that the auctioneer
is worse off from asymmetries, bidders must benefit.

Theorem 1 concerns the situation in which one configuration is symmetric and the other is
asymmetric. In some cases, we can order two asymmetric configurations and argue that one is
“more asymmetric” than the other. In those cases, we can generalize Theorem 1 and show that
the more asymmetric the configuration, the lower the expected revenue.
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One case for which such a partial order is available is for the special but important class of
power distributions: Fi(v) = H(v)αi where H is a continuous cumulative distribution function
with support on [v, v̄], and αi ∈ R+. These have been used to model efficient collusion, joint
bidding and mergers among homogeneous bidders. A configuration in that class of distributions
can be represented by a vector of ordered real numbers (α1, . . . , αN) with α1 � α2 � · · · � αN .
A configuration β is said to be more asymmetric than configuration α if

∑m
i=1 αi �

∑m
i=1 βi (at

least one inequality strict) for all m � N − 1 and
∑N

i=1 αi = ∑N
i=1 βi.

5 For example, for two
bidders, the β configuration with β1 > α1 � α2 > β2 is more asymmetric than configuration α.

Theorem 2. Consider two configurations of bidders, α and β . In the α configuration, Fi(v) =
H(v)αi for i = 1, . . . ,N , and Gi(v) = H(v)βi in the β configuration. If the β configuration is
more asymmetric than the α configuration, expected revenue in the dominant strategy equilibrium
of the second price auction in the β configuration is strictly lower than in the α configuration.

Theorem 2 was first proved by Waehrer and Perry (2003). It rationalizes the numerical results
presented in Marshall et al. (1994).

Proof. Theorem 2 follows directly from (2). Let Sα(v) denote the cumulative distribution of the
second-order statistics in the α configuration, and similarly for Sβ(v). Dividing expression (2) by∏

i Fi (which is strictly positive on (v, v̄]), we get that Sβ(v) > Sα(v) for v ∈ (v, v̄] if and only if∑
i

1
Hβi

>
∑

i
1

Hαi . The proof proceeds by comparing successive configurations of bidders that

differ only in the positions of two bidders and by exploiting the fact that 1
Ha is a convex function

of α. Thus, consider configuration γ = (β1, α2 +α1 −β1, . . . , αN) that differs from configuration
α in the positions of bidders 1 and 2. Because α1 � β1 by assumption and β1 + α2 + α1 −
β1 = α1 + α2 by construction, we have α1 + α2 − β1 � α2 and

∑
i

1
Hγi �

∑
i

1
Hαi (strictly so if

α1 < β1). Next consider configuration γ ′ = (β1, β2, α3 +α1 +α2 −β2 −β1, . . . , αN) that differs
from configuration γ in the positions of bidders 2 and 3. Because α1 + α2 � β1 + β2, we have∑

i
1

H
γ ′
i

�
∑

i
1

Hγi . We repeat this logic until we reach configuration β . Because configuration β

is by assumption more asymmetric, one of the inequalities must be strict. �
More generally, expression (2) suggests that we can rank the revenues from any two configu-

rations that generate the same distribution of potential social surplus whenever
∑N

i=1
∏

j �=i Fj −∑N
i=1

∏
j �=i Gj has the same sign for all v. When N = 2, this condition simplifies to F1 + F2 −

(G1 + G2) having the same sign for all v. This will be satisfied if min{F1,F2} � G1,G2 �
max{F1,F2} for all v, and F1F2 = G1G2. Clearly, configuration (F1,F2) is “more asymmetric”
than configuration (G1,G2).

Theorem 2 can also help us get some intuition for the result. Indeed, while the mechanics be-
hind these results is clear (holding the distribution of the first-order statistics fixed, asymmetries
means that the second-order statistics is more likely to be lower), the intuition is not transpar-
ent. Consider three bidders, with α1 > α2 i.e. bidder 1 is more likely to have a high valuation.
Suppose bidder 3 is considering merging with either bidder 1 or bidder 2. Merging two bidders

5 This criterion defines a quasi-ordering. Waehrer and Perry (2003) discuss other measures of asymmetry for this
class of distributions. In particular, they show that if configuration β is more asymmetric than configuration α under the
criterion above, the Herfindahl index based on expected market share under configuration β is also greater than under
configuration α.
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means that only the highest of the two valuations will be kept. This will have an effect on revenue
only to the extent that the “discarded” valuation was the second highest valuation among all three
bidders. We need to consider three cases. First, bidder 3’s realization is the highest among the
three. Given the distribution, the most likely second highest valuation is bidder 1’s so a merger
with 2 is preferable for revenue. Second, bidder 3’s realization is the second highest. The more
likely case that this stays after the merger is that he merges with bidder 2. Finally, bidder 3’s val-
uation is the lowest. In that case, it does not matter with whom he merges since it does not affect
the second highest valuation. Thus in all cases, it is better for revenue to have bidder 3 merge
with bidder 2. This is also the configuration that involves the lower degree of asymmetries.6

4. The effects of asymmetries in the FPA

We now turn to the first price auction. In the FPA, the winner is the bidder who places the
highest bid and he pays his own bid. Formally, if bidder i has valuation vi and wins the auction
by submitting a bid b, his resulting payoff is equal to vi − b (and zero otherwise). Bidders max-
imize their expected payoff: maxbi

(vi − bi)Pr(bi > maxj �=i bj ). A pure strategy equilibrium in
this Bayesian game is a vector of bidding functions bi : [v i, v̄i] → R+, i = 1, . . . ,N . A monotone
pure strategy equilibrium exists under our assumptions of independent private values and contin-
uously differentiable distribution function on a interval (Lebrun, 1996; Maskin and Riley, 2000a;
Athey, 2001; Reny and Zamir, 2004). It is characterized by a set of differential equations with
boundary conditions (Plum, 1992; Lebrun, 1999; Maskin and Riley, 2003) unless the supports
of the valuations are so disjoint that the equilibrium is degenerate (one bidder always wins). In-
verse bid functions φi : [b, bi] ⊂ R+ → [v i, v̄i], exist and are strictly increasing and continuously
differentiable on (b, bi]. They solve bidders’ first-order conditions subject to some boundary con-
ditions for minimum and maximum bids. Finally, Lebrun (1999) and Maskin and Riley (2003)
derive conditions under which the equilibrium is unique.

There are three things to point out about the equilibrium in the FPA. First, in general, no an-
alytical solution exists for the equilibrium in the FPA when bidders are asymmetric. Exceptions
include the distributions studied in Griesmer et al. (1967) and Plum (1992).7 Second, the first
price auction is generically inefficient when bidders’ distributions are asymmetric. Third, when
deciding how much to bid, a bidder takes into account the distribution of bids of his opponents
only to the extent that his own bid is the highest (i.e. conditional on winning). In other words,
what matters for a bidder is the distribution of the second highest bid, conditional on his bid
being the highest. By construction, the distribution of the high valuation will be the same across
the configurations we consider. So, one interpretation of our results is that this conditional distri-
bution of the second highest bid when bidders are asymmetric induces less aggressive behavior
on their part.

We start with an example to illustrate the competitive pressure that a more equal distribution
of high realizations among bidders puts on bidding behavior.

Example 1. Suppose there are two bidders with valuations distributed uniformly over [0,1]
(for bidder 1) and [1,2] (for bidder 2), respectively. Then, bidders never bid more than 1

6 I thank a referee for suggesting this intuition.
7 Griesmer et al. consider the case of uniform distributions with a common lower bound, i.e. Fi(v) = (v−v)

(v̄i−v)
. Plum

considers distributions of the form Fi(v) = (v−v)α

α for α > 0.

(v̄i−v)
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in equilibrium (by submitting a bid of 1, bidder 2 wins for sure, so he has no incentives
to bid higher—bidder 1 does not bid more than her valuation at equilibrium). Therefore,
Rf (F1,F2) � 1. On the other hand, the benchmark distribution has support on [1,2]. Because
this auction satisfies all the conditions of the Revenue Equivalence Theorem (Myerson, 1981;
Riley and Samuelson, 1981), we can appeal to this result and conclude that Rf (F,F ) is equal
to the expected value of the second-order statistics from F , that is, Rf (F,F ) > 1. Hence,
Rf (F,F ) > Rf (F1,F2).

Example 1 is clearly extreme because the highest valuation is always bidder 2’s in the original
configuration. Knowing this, bidder 2 is able to shade his bid significantly, and this hurts the
auctioneer. By contrast, in the symmetric benchmark (F,F ), both bidders are as likely to have
the highest valuation and this keeps them on their toes. In the remainder of this section, we show
that this result generalizes to less extreme environments.

An important property of some of the bidder configurations we consider is that the distri-
butions can be ranked according to a standard conditional stochastic dominance property (for
other uses of this property in auction settings, see, e.g., Tan, 1992; Lebrun, 1999; Waehrer, 1999;
Li and Riley, 1999; Maskin and Riley, 2000b; Arozamena and Cantillon, 2004). This imposes
the following structure on the equilibrium inverse bid functions and probabilities of winning.

Lemma 1. (See Lebrun, 1999, Corollary 3; Maskin and Riley, 2000b, Propositions 3.3 and 3.5.8)

Suppose that
F ′

i

Fi
>

F ′
j

Fj
for all v ∈ (max{v i, v j },min{v̄i , v̄j }] (in particular, this means that

Fi < Fj , on the interior of their common support—bidder i is the most eager bidder). Then,
at equilibrium:

(a) φi(b) > φj (b) for all b, on the interior of the intersection of the support of i and j’s equilib-
rium bids (the “strong” bidder bids less aggressively); and

(b) Fi(φi(b)) < Fj (φj (b)) for all b, on the interior of the intersection of the support of i and j’s
equilibrium bids (i.e. the “strong” bidder continues to be more likely to win).

In this section, we prove that asymmetries hurt the auctioneer for three classes of distributions.
Moreover, for the class of power distributions, we have a quasi-ordering of configurations and
so we are able to prove the stronger result that expected revenue is lower the more asymmetric
bidders are. We start with this case.

Theorem 3 (N = 2). Suppose that α1 + α2 = β1 + β2 for αi,βi ∈ R+. Consider two configura-
tions of bidders. In the α configuration, bidders’ cumulative distributions are F1(v) = H(v)α1

and F2(v) = H(v)α2 where H(v) is the cdf of a uniform distribution. In the β configuration,
G1(v) = H(v)β1 and G2(v) = H(v)β2 . Let α1 � α2. Then, if β1 > α1, the expected revenue from
the β configuration, Rf (β) is strictly lower than that from the α configuration, Rf (α).

We provide an outline of the proof here; the full proof is in Appendix A. Denote by (φ1, φ2)

the equilibrium inverse bid functions in the α configuration, and by (φ̃1, φ̃2), the equilibrium
inverse bid functions in the β configuration. Let Gα(b) = H(φ1(b))α1H(φ2(b))α2 and Gβ(b)

8 Lebrun derives his result under the assumption that the distributions of valuations have a common support [v, v̄] with
positive density on (v, v̄]. Maskin and Riley allow different supports but require a positive density on [v i , v̄i ].
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= H(φ̃1(b))β1H(φ̃2(b))β2 , that is, Gα(b) and Gβ(b) are the cumulative distributions of the
winning bids in the α and β configurations, respectively. With these notations, the expressions
for the expected revenue in each configuration is given by

Rf (α) =
∫

b dGα(b), Rf (β) =
∫

b dGβ(b).

A sufficient condition for Rf (α) > Rf (β) is that Gα(b) < Gβ(b) on the interior of their
common support (first-order stochastic dominance). The minimum equilibrium bid in each con-
figuration, b, is equal to v, but we can show that Gα(b) < Gβ(b) close to b (step 1). Next, we
use Lemma 1 and bidders’ first-order conditions to prove that

Gα(b) = Gβ(b) ⇒ G′
α(b)

Gα(b)
<

G′
β(b)

Gβ(b)
.

This rules out any crossing of Gα and Gβ to the right of b. We conclude that Gα(b) < Gβ(b)

for all b > b. Hence, Rf (α) > Rf (β).
Theorem 3 is the analog of Theorem 2 for the first price auction when N = 2. It rationalizes

and generalizes the numerical results reported by Marshall et al. (1994) that greater asymmetries
among bidders decreases the auctioneer’s expected revenue in the first price auction. As a special
case, it also implies that the expected revenue in any asymmetric auction is less than in the
symmetric benchmark.

Corollary 3. Suppose N = 2 and Fi(v) = H(v)βi where H is the cdf of a uniform distribution
and βi > 0. Then Rf (F1,F2) < Rf (F,F ) as soon as β1 �= β2.

Proof. Just set α1 = α2 = β1+β2
2 in Theorem 3. �

As pointed out in Marshall et al. (1994), the class of power distributions has an alternative
interpretation in terms of heterogeneous preferences. Suppose that valuations are independently
and identically drawn from a uniform distribution on the unit interval and that bidders have a
utility function Ui(x) = xki . Their objective function is given by (v − b)ki v which is isomorphic
to (v − b)H(v)αi when H(v) = v and ki = 1

αi
. Thus Theorem 3 and Corollary 3 implies that in

the first price auction, the auctioneer prefers homogeneous risk attitudes over heterogeneous risk
attitudes.

Next, we consider asymmetries generated with uniform distributions.

Theorem 4 (N = 2). Consider any asymmetric configuration of bidders (F1,F2), where F1 and
F2 are uniform distributions over [v 1, v̄1] and [v 2, v̄2], respectively, where v 1 � v 2 and v̄1 � v̄2.
Then Rf (F1,F2) < Rf (F,F ) as long as the supports of F1 and F2 differ.

The proof can be found in Appendix A. It uses the same logic as the proof of Theorem 3.
Note that when v 1 = v 2, Griesmer et al. provide an explicit solution to the equilibrium bidding
functions. No known explicit solution is known in the other cases.

Finally, we consider an intermediate class of distributions.

Theorem 5 (N = 2). Consider any asymmetric configuration of bidders (F1,F2), where Fi =
(v−v)α

α , for α > 0. Then Rf (F1,F2) < Rf (F,F ) if v̄1 �= v̄2.

(v̄i−v)
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Again, the proof can be found in Appendix A. The logic is similar to the proofs of Theorems 3
and 4. The difference is that, rather than proving that G∗(b) < G(b) close to b (the minimum bid
is the same in both configurations), we use Plum’s (1992) explicit solution for the equilibrium
to establish that the maximum equilibrium bid in the benchmark configuration is strictly higher
than in the original distribution. Thus G∗(b) < G(b) close to b̄.9

We end this section by noting that, in all three theorems in this section, our results are actually
stronger than simple revenue dominance. In all cases, the distribution of revenue in the symmetric
benchmark first-order stochastically dominates the distribution of revenue in the asymmetric
auction. This provides an additional empirical prediction.

Corollary 4. Under the assumptions of Theorems 3, 4 or 5, the distribution of revenue in the
benchmark environment stochastically dominates that of the asymmetric auction.

5. Discussion

In this section, we revisit the results of the previous sections in light of the two motivations for
this research: (1) to compare different market structures in auctions and (2) to better understand,
at a conceptual level, the effect of bidders’ asymmetries on rents and revenue.

5.1. Applications

Theorems 1–5 provide a partial ordering of market structures in terms of expected revenue.
The next examples illustrate how we can use them to evaluate mergers and investment programs
in auction markets.

Example 2 (Bidder sponsoring in a procurement auction with constant returns to scale on in-
vestment). A buyer is facing N suppliers with cumulative cost distribution functions 1 − (1 −
H(x))α0i on a common support, i = 1, . . . ,N . The low bidder wins.10 Each bidder can invest
to reduce his cost stochastically according to the process 1 − (1 − H(x))α0i+αi , where αi is
the level of investment. There is a constant marginal cost of investment c.11 Suppose the buyer
has a fixed budget of B to spend on encouraging such investment (for simplicity we assume
that the buyer has to spend this budget and covers the entire cost of the investment). Theo-
rem 2 (if the buyer uses a second price auction) and Theorem 3 (if N = 2 and the buyer uses
a first price auction) apply to rank the different sponsoring plans. An investment policy is fea-
sible if αi � 0, i = 1, . . . ,N , and c

∑
i αi = B . The best feasible investment policy is one such

that
∑m

i=1 α0i + αi �
∑m

j=1 α0j + α̂j for all m � N − 1, and for any alternative feasible in-
vestment policy α̂j , where bidders are labeled in such a way that α0i + αi � α0i+1 + αi+1 and

9 This is the only use we can make of Plum’s explicit solution. The equilibrium bidding functions cannot be inverted
analytically making an explicit computation of expected revenues in both configurations impossible.
10 This example is framed as a procurement auction, but since procurement auctions and standard auctions are math-
ematically equivalent, the results apply. The distribution 1 − (1 − H(x))α0i is the procurement analog of distribution
H(x)α0i . The distribution of the lowest order statistics—which is the relevant measure of social welfare here—is∏

i (1 − H(x))α0i .
11 Returns to scale on investment are said to be constant when the net effect of a monetary unit of investment on social
surplus is independent of the initial competitive position of the bidder carrying out the investment. Here, returns to scale
are constant because: (1) the marginal effect of investment on potential social surplus is the same independently of which
bidder carries out the investment, and (2) the marginal cost of investment is constant.
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α0j + α̂j � α0j+1 + α̂j+1 (bidders need not be labeled in the same way in the two configura-
tions).12 Specifically, if there exists a feasible investment policy such that α0i + αi = α0j + αj

for all i, j , this is the optimal investment policy. Otherwise, Theorems 2 and 3 imply that the
investment subsidy should go in priority to the weaker bidders until they “catch up.” For con-
creteness, suppose α01 = 5, α02 = 2 and α03 = 1 and B = 3c, then the optimal investment policy
is α1 = 0, α2 = 1 and α3 = 2.

Example 2 uses Theorems 2 and 3 literally. The following example combines the insights
from these results with the additional partial order provided by first-order stochastic domi-
nance in first and second price auctions. Specifically, if two bidder configurations (F1, . . . ,FN)

and (F̃1, . . . , F̃N ) are such that Fi first-order stochastically dominates F̃i for all i, then
Rs(F1, . . . ,FN) < Rs(F̃1, . . . , F̃N ) (a straightforward consequence of stochastic dominance)
and Rf (F1,F2) < Rf (F̃1, F̃2) (Arozamena and Cantillon, 2004, Corollary 1).13

Example 3 (Bidder sponsoring in a procurement auction with decreasing returns to scale on
investment). Consider the same environment as in Example 2 but where marginal costs are
an increasing function of bidders’ competitive position, c(α0i + αi) with c′ > 0. The optimal
investment policy is the one that maximizes

∑
i αi subject to

∑
i

∫ αi

0 c(α0i + x)dx = B . To

see this, consider another feasible investment policy β . Thus,
∑

i

∫ βi

0 c(α0i + x)dx = B and∑
i αi >

∑
i βi (if

∑
i αi = ∑

i βi , increasing marginal costs and maximal investment mean that
α and β are the same policies). Strictly speaking, Theorems 2 and 3 do not apply to compare
policy α and policy β . However, consider the policy β̂ that minimizes asymmetries subject to∑

i β̂i = ∑
i βi . Theorems 2 and 3 imply that Rs(β̂) � Rs(β) and Rf (β̂) � Rf (β). Now, label

bidders such that α0i +αi � α0i+1 +αi+1 and α0i + β̂i � α0i+1 + β̂i+1 (a bidder’s label does not
need to be the same in both configurations). By construction, α0i + αi � α0i + β̂i for all i (strict
for at least one i). Thus, Rs(α) > Rs(β̂) and Rf (α) > Rf (β̂). In words, the optimal policy min-
imizes bidders’ asymmetries. The intuition is the same as for Example 2, only reinforced by the
fact that it is cheaper to sponsor weaker suppliers. For concreteness, suppose α01 = 5, α02 = 2
and α03 = 1, B = 3.75 and marginal cost αi0 + αi (implying costs equal to α0iαi + 1

2α2
i ). The

optimal policy is α1 = 0, α2 = 0.5 and α3 = 1.5. It equalizes the marginal costs of investment
for bidders 2 and 3 and maximizes the investment level conditional on the budget.

Examples 2 and 3 are reminiscent of Myerson’s (1981) optimal auction, which biases the
auction allocation in favor of the weak bidders. The mechanism here is different. The auctioneer
pays the weak bidders’ investment up-front, whether or not they end up winning. In Myerson’s
auction, the bias can sometimes be implemented as a bidding bonus to the weak bidders—which
is relevant only if they win.

Example 4 (Mergers and joint bidding). Mergers and joint bidding do not affect the distribution
of the first-order statistics, so Theorems 2 and 3 therefore apply directly, with the following

12 Given that the “more asymmetric than” relation is a quasi-order, one may not be able to rank two arbitrary investment
policies. However, the best feasible policy always exists.

13 Arozamena and Cantillon require
F ′

i
Fi

<
F̃ ′

i

F̃i
(strict conditional stochastic dominance), which is satisfied for the distri-

butions studied in Theorems 3 and 4. The distributions in Theorem 5 satisfies weak conditional stochastic dominance.
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implications: (1) mergers and joint bidding increase prices in the SPA, and (2) the merger or
joint bidding least damaging for prices is the one that involves the two “weakest” bidders.

Example 4 generalizes previous results in the merger literature. They were recently derived
for the SPA (Waehrer and Perry, 2003) but have not been established theoretically for the FPA
(Marshall et al., 1994; Dalkir et al., 2000, provide numerical results that suggest these two re-
sults).

5.2. Asymmetries when the auctioneer can discriminate among bidders

The second motivation for this research was to understand, at a conceptual level, the effect
of asymmetries on expected revenue. One possible interpretation of our results is the following:
the reason why asymmetries hurt revenue in the SPA and FPA is that the auctioneer is unable to
discriminate among bidders in these auction formats. To investigate this conjecture, we consider
how asymmetries affect the auctioneer in the (Myerson) optimal auction.

Example 5 (Asymmetries can benefit the “optimal” auctioneer). Suppose N = 2, F1 is uniform
on [4,5] and F2 is uniform on [4,8]. The virtual valuations under (F1,F2) are J1(v1) = v1 −
(1−F1(v1))

f1(v1)
= 2v1 − 5 and J2(v2) = v2 − (1−F2(v2))

f2(v2)
= 2v2 − 8. Since both virtual valuations are

increasing, the problem is regular in the sense of Myerson (1981), and

Ropt(F1,F2) = 1

4

5∫
4

8∫
4

max
{
J1(v1), J2(v2),0

}
dv2 dv1

= 1

4

5∫
4

[ v1+ 3
2∫

4

(2v1 − 5)dv2 +
8∫

v1+ 3
2

(2v2 − 8)dv2

]
dv1

= 1

4

5∫
4

(
(2v1 − 5)2

2
+ 39

4
− v2

1 + 5v1

)
dv1 = 5 + 1

48
.

The distribution in the benchmark environment is given by

F(v) =
{

(v−4)
2 , v ∈ [4,5],

√
v−4
2 , v ∈ (5,8],

and f (v) =
{ 1

2 , v ∈ [4,5],
1

4
√

v−4
, v ∈ (5,8].

Turning to virtual valuations, we have

J (v) =
{

2v − 6, for v ∈ [4,5],
3v − 8 − 4

√
v − 4, for v > 5.

The virtual valuations are increasing on [4,5) and on (5,8]. However,

limJ (v) = 4 > limJ (v) = 3.

v↑5 v↓5
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This means that the problem is not regular in the sense of Myerson (1981) and the optimal auction
requires bunching over an interval of valuations. Consider the following expression:

R =
8∫

4

8∫
4

max
{
J (v1), J (v2),0

}
f (v1)f (v2)dv1 dv2. (4)

This expression would correspond to the expected revenue from the optimal auction if the
auction were regular. Given that it is not, (4) overestimates the expected revenue from the
optimal auction: Ropt(F,F ) < R. In Appendix B, we explicitly compute (4) and find that
R = 4.8081 < Ropt(F1,F2). Asymmetries benefit the auctioneer.

6. Conclusions and directions for future research

In this paper, we have sought to understand how ex ante differences in the distributions of
bidders’ valuations affect revenue and profits. We have shown that, holding the distribution of
potential social surplus constant, asymmetries reduce expected revenue, both in the first price and
in the second price auctions. In other words, in both cases, asymmetries reduce the share of social
surplus that the auctioneer is able to capture. In addition, for the type of bidder heterogeneity
that arises from merger, collusion or joint bidding by homogeneous bidders, we have found
that the greater the asymmetries, the lower the revenue. Auctions are decentralized allocation
mechanisms and the outcome is ultimately driven by bidders’ strategic interactions. In that sense,
the results formalize the idea that asymmetries reduce the competitive pressure on bidders.

At the policy level, the results can be used for merger analysis in auction markets, the eval-
uation of the welfare consequences of joint bidding and the evaluation of the impact of market
structure on outcomes in general.

Three types of extensions to this research suggest themselves. First, it would be interesting to
generalize the analytical results for the FPA to any distribution. Our current approach exploits the
structure that equilibrium places on behavior to prove the stronger result that the distribution of
revenue in the symmetric benchmark first-order stochastically dominates that in the asymmetric
configuration. In numerical experiments using truncated normal distributions, the revenue sto-
chastic dominance condition always held, suggesting both that the result is robust to the choice
of distributions and that the way forward is to develop further characterization results for the
asymmetric first price auction.

Second, we have made a number of assumptions on the environment, which could be relaxed
in the future. Some appear to be simplifying assumptions, for example, our assumption that val-
uations are independently distributed, or the fact that we have ignored reserve prices. Others are
more fundamental and deserve some comments. We have proposed to study asymmetric auc-
tions by comparing the outcome in an asymmetric auction with that of a benchmark symmetric
auction. We have argued that the geometric average was the appropriate benchmark in our case.
This benchmark is not universal. It depends on both the environment and on the questions to
be answered ultimately. For example, the distribution of information rather than the distribution
of valuations per se seems to be the relevant dimension for common values environments. As an
example of how the choice of a benchmark depends on the question asked, see Kaplan and Zamir
(2002). Much remains to be done, but we hope to have demonstrated the use of this approach for
understanding market situations with heterogeneity among participants.

Third, an open question is to what extent our results reflect the fact that the two auction mech-
anisms that we considered are anonymous auction mechanisms in the sense that the same rule
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applies to all bidders. A conjecture is that asymmetries hurt the auctioneer in any anonymous
auction mechanism. Indeed, as found in Section 5, asymmetries do not necessarily hurt the auc-
tioneer in an optimal auction, i.e. the expected revenue in the asymmetric optimal auction may
be higher than in the optimal auction for the benchmark auction. This is left for future research.
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Appendix A

A.1. Proof of Theorem 3

Theorem 3 (N = 2). Suppose that α1 + α2 = β1 + β2 for αi,βi ∈ R+. Consider two configura-
tions of bidders. In the α configuration, bidders’ cumulative distributions are F1(v) = H(v)α1

and F2(v) = H(v)α2 where H(v) is the cdf of a uniform distribution. In the β configuration,
G1(v) = H(v)β1 and G2(v) = H(v)β2 . Let α1 � α2. Then, if β1 > α1, the expected revenue from
the β configuration, Rf (β) is strictly lower than that from the α configuration, Rf (α).

Proof. Denote by (φ1, φ2) the equilibrium inverse bid functions in the α configuration and by
(φ̃1, φ̃2) the equilibrium inverse bid functions in the β configuration (the equilibrium is unique
by Lebrun, 1999, Corollary 4). Let Gα(b) be the cumulative distribution function of the winning
bids in the α configuration. Define Gβ(b) similarly. The minimum winning bid is b = v. For
future reference, bidders’ FOCs in the α configuration read

α2H
′(φ2(b))φ′

2(b)

H(φ2(b))
= 1

φ1(b) − b
, (A.1)

α1H
′(φ1(b))φ′

1(b)

H(φ1(b))
= 1

φ2(b) − b
(A.2)

and similarly for the FOCs in the β configuration.
As a preliminary step, we derive the expression for the derivatives of the inverse bid functions

at the origin. Rewriting (A.1), applying l’Hôpital’s rule, and appealing to the fact that equilibrium
inverse bid functions are continuously differentiable, we have

lim
b↓b

α2H
′(φ2(b)

)
φ′

2(b) = lim
b↓b

H(φ2(b))

φ1(b) − b
= H ′(φ2(b ))φ′

2(b )

φ′
1(b ) − 1

that is,

α2φ
′
2(b ) = φ′

2(b )

φ′ (b ) − 1
. (A.3)
1
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Solving for φ′
1(b ) yields φ′

1(b ) = 1+ 1
α2

. Similarly, φ′
2(b ) = 1+ 1

α1
and φ̃′

i (b ) = 1
βj

+1, j �= i.14

Step 1. Gα(b) < Gβ(b) for b close to b.

At b, Gα(b ) = Gβ(b ) = 0 since H(v ) = 0. We want to show that limb↓b
Gβ(b)

Gα(b)
> 1. By the

mean value theorem, for all b > b, there exists b1 ∈ (b, b) such that:

H
(
φ1(b)

) = H ′(φ1(b1)
)
φ′

1(b1)(b − b )

and likewise for H(φ2),H(φ̃1) and H(φ̃2) (this defines b2, b̃1 and b̃2). Hence

lim
b↓b

Gβ(b)

Gα(b)

≡ lim
b↓b

H(φ̃1(b))β1H(φ̃2(b))β2

H(φ1(b))α1H(φ2(b))α2

= lim
b↓b

H ′(φ̃1(b̃1))
β1 φ̃′

1(b̃1)
β1H ′(φ̃2(b̃2))

β2 φ̃′
2(b̃2)

β2

H ′(φ1(b1))α1φ′
1(b1)α1H ′(φ2(b2))α2 φ̃′

2(b2)α2
(the (b − b ) terms cancel)

= [φ̃′
1(b )]β1 [φ̃′

2(b )]β2

[φ′
1(b )]α1 [φ′

2(b )]α2
(taking the limit and using φ1(b ) = φ2(b ) = φ̃1(b ) = φ̃2(b ))

= ( 1
β1

+ 1)β2( 1
β2

+ 1)β1

( 1
α1

+ 1)α2( 1
α2

+ 1)α1
.

We want to show that this expression is greater than 1, or equivalently, that

β2 ln

(
1

β1
+ 1

)
+ β1 ln

(
1

β2
+ 1

)
> α2 ln

(
1

α1
+ 1

)
+ α1 ln

(
1

α2
+ 1

)
(A.4)

14 This result was first derived by Marshall et al. (1994) who also present plots of the bidding functions. A slight
shortcut is involved in this argument because the last step assumes that φ′

2(b ) is not infinite. A longer and more involved

argument is as follows. First note that if φ′
2(b ) = ∞, then φ′

1(b ) = ∞ too. Define φ2(b) = φ2(b ) + K(b − b ) for some

K > 0 (when K = φ′
2(b ), φ2(b) corresponds to the first-order approximation of φ2(b) around b ). Define b̄a1(v) =

arg maxb(v − b)H(φ2(b))α2 . We have b̄1(v)−b̄1(v )
v−v = b1(v)−b1(v )

v−v + b̄1(v)−b1(v)
v−v . We will show that b̄1(v)−b̄1(v )

v−v =
[1 + 1

α2
]−1 for all v and that limv↓v

b̄1(v)−b1(v)
v−v = 0. Thus, b′

1(v) ≡ limv↓v
b1(v)−b1(v )

v−v = [1 + 1
α2

]−1 as claimed. The
argument proceeds in two steps:

1. b̄1(v) solves the FOC: b̄1(v) = v − H(φ2(b̄1(v)))

α2H ′(φ2(b̄1(v)))K
. Using the fact that H is the cdf of a uniform distribution,

and φ2(b ) = v, H(φ2(b̄1(v)))

H ′(φ2(b̄1(v)))
= K(b̄1(v) − v ). Thus, b̄1(v) = v − (b̄1(v)−v )

α2
implying b1(v)−b̄1(v )

v−v = [1 + 1
α2

]−1

as claimed.
2. Fix any v > v. From bidders’ first-order conditions and taking into account that H is the cdf of a uni-

form distribution, we have b̄1(v) = v − (b̄1(v)−v )
α2

and b1(v) = v − φ2(b1(v))−v

α2φ′
2(b1(v))

. Thus: b̄1(v)−b1(v)
v−v =

φ2(b1(v))−v−φ′
2(b1(v))(b̄1(v)−v )

(v−v )α2φ′
2(b1(v))

. Now, v = φ2(b1(v )) = φ2(b1(v)) + φ′
2(b1(v))(b1(v ) − b1(v)) + O2(b1(v ) −

b1(v)). Substituting this expression leads to b̄1(v)−b1(v)
v−v = −[1 + 1

α2
]−1 O2(b1(v )−b1(v))

(v−v )α2φ′
2(b1(v))

= −[1 +
1
α2

]−1 O2(b1(v )−b1(v))

α2φ′
1(b1(v̂ ))(b1(v)−b1(v ))φ′

2(b1(v))
(for some v̂ ∈ (v, v) by the mean value theorem). The term (b1(v) −

b1(v ))φ′
2(b1(v)) is in the order of the first-order remainder of a Taylor expansion around b1(v), O(b1(v) − b ).

Thus the expression converges to zero.
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for all α1, α2, β1, β2 such that α1 + α2 = β1 + β2 and β1 > α1 � α2 > β2.
To prove this, we make the following change of variables. Since β1 > α1 � α2 > β2, we can

express α1 and α2 as convex combinations of β1 and β2: α1 = λ1β1 + (1 − λ1)β2 and α2 =
λ2β1 + (1 − λ2)β2, where λ1 + λ2 = 1 since α1 + α2 = β1 + β2 and β1 > β2. Next, define
f (x) = (α1 +α2 − x) ln( 1

x
+ 1) with α1 +α2 > x. The right-hand side of (A.4) can be written as

f (α1) + f (α2) = f
(
λ1β1 + (1 − λ1)β2

) + f
(
λ2β1 + (1 − λ2)β2

)
< f (β1) + f (β2) given the convexity of f and the fact that λ1 + λ2 = 1.

This corresponds to the left-hand side of (A.4). End of step 1.

Step 2. If Gα(b) = Gβ(b), for some b in the interior of their support, then G′
α(b)

Gα(b)
<

G′
β(b)

Gβ(b)
.

Summing up bidders’ FOCs and using the definition of Gα and Gβ , we get

G′
α(b)

Gα(b)
= 1

φ1(b) − b
+ 1

φ2(b) − b
, (A.5)

G′
β(b)

Gβ(b)
= 1

φ̃1(b) − b
+ 1

φ̃2(b) − b
. (A.6)

We first derive restrictions that equilibrium behavior and the fact that Gα = Gβ impose on the
relationship between φ1, φ2, φ̃1 and φ̃2. Lemma 1 implies that φ1(b) � φ2(b) and φ̃1(b) > φ̃2(b)

on the interior of their domain. This leaves 6 potential orderings of the equilibrium inverse bid
functions at b: (1) φ1 � φ2 � φ̃1 > φ̃2, (2) φ1 � φ̃1 � φ2 � φ̃2 (at least one inequality strict), (3)
φ1 � φ̃1 > φ̃2 � φ2, (4) φ̃1 � φ1 � φ̃2 � φ2 (at least one inequality strict), (5) φ̃1 � φ1 � φ2 � φ̃2
(at least one inequality strict), and (6) φ̃1 > φ̃2 � φ1 � φ2.

Now, Gα(b) = Gβ(b) means that H(φ1(b))α1H(φ2(b))α2 = H(φ̃1(b))β1H(φ̃2(b))β2 . Let λ =
α1

α1+α2
and λ̃ = β1

β1+β2
. This expression can be rewritten as

λ lnH
(
φ1(b)

) + (1 − λ) lnH
(
φ2(b)

)
= λ̃ lnH

(
φ̃1(b)

) + (1 − λ̃) lnH
(
φ̃2(b)

)
with λ < λ̃. (A.7)

This rules out orderings (1), (4) and (6). The following claim rules out ordering (3).

Claim 1. There cannot be any value of bid b̂ > b for which φ1(b̂) � φ̃1(b̂) > φ̃2(b̂) � φ2(b̂).

Proof. We first claim that if there exists such a b̂, then

φ1(b) > φ̃1(b) � φ̃2(b) > φ2(b) for all b > b̂. (A.8)

The only way in which (A.8) could be false is if there exists a b such that (1) φ1(b) = φ̃1(b)

and φ′
1(b) � φ̃1(b) while φ̃2(b) � φ2(b), or (2) φ2(b) = φ̃2(b) and φ′

2(b) � φ̃2(b) while φ̃1(b) �
φ1(b). In the first case, we have

α1
H ′(φ1)

H(φ1)
φ′

1 < β1
H ′(φ̃1)

H(φ̃1)
φ̃′

1 since α1 < β1

which, using bidder 2’s FOC in both configurations (Eq. (A.2) and its equivalent) implies that
φ2 > φ̃2, a contradiction. In the second case, we have

α2
H ′(φ2)

H(φ )
φ′

2 > β2
H ′(φ̃2)

˜ φ̃′
2 since α2 > β2
2 H(φ2)
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which, using bidder 1’s FOC in both configurations implies that φ1 < φ̃1, a contradiction. Thus,
(A.8) must hold.

We are now ready to reach a contradiction. With two bidders, the equilibrium maximum bid
is common to both bidders (e.g., Lebrun, 1999). Let us denote them by b̄α (for the maximum
bid in the α configuration) and b̄β , respectively. Since the upper bound to the distributions of
valuations, v̄, is common in both configurations, we must also have φ1(b̄α) = φ̃1(b̄β) = φ̃2(b̄β) =
φ2(b̄α) = v̄. This is impossible if (A.8) holds. This proves the claim. �

We conclude that only orderings (2) and (5) are possible when Gα = Gβ . We now show

that G′
α

Gα
<

G′
β

Gβ
must hold. Referring back to (A.5) and (A.6), G′

α

Gα
<

G′
β

Gβ
follows trivially with

ordering (2). The next claim proves that G′
α

Gα
<

G′
β

Gβ
if ordering (5) holds.

Claim 2. Suppose there exists a b on the interior of the bidders’ bid supports such that Gα(b) =
Gβ(b) and φ̃1(b) � φ1(b) � φ2(b) � φ̃2(b) (at least one inequality strict). Then G′

α

Gα
<

G′
β

Gβ
.

Proof. Let f (x) = lnH(x), λ = α1
α1+α2

and λ̃ = β1
β1+β2

, and consider the following optimization
problem:

max
φ1,φ2,φ̃1,φ̃2

1

φ1 − b
+ 1

φ2 − b
− 1

φ̃1 − b
− 1

φ̃2 − b
(A.9)

subject to

λf (φ1) + (1 − λ)f (φ2) = λ̃f (φ̃1) + (1 − λ̃)f (φ̃2) (γ ), (A.10)

φ̃1 � φ1 (δ1), (A.11)

φ1 � φ2 (δ2). (A.12)

The first constraint corresponds to the requirement that Gα = Gβ . The second and third con-
straints are the relaxed version of the requirement on the ordering of the inverse bid functions
(note that (A.10) to (A.12) imply φ2 � φ̃2—cf. the argument around (A.7)). The corresponding
multipliers are in parenthesis.

The objective function corresponds to G′
α

Gα
− G′

β

Gβ
. The idea of the proof is to show that the value

of this objective function at the optimum is negative.
This is an optimization problem of a continuous function over a compact set, so a solution

exists. The first-order conditions are given by

− 1

(φ1 − b)2
+ γ λf ′(φ1) − δ1 + δ2 = 0,

− 1

(φ2 − b)2
+ γ (1 − λ)f ′(φ2) − δ2 = 0,

1

(φ̃1 − b)2
− γ λ̃f ′(φ̃1) + δ1 = 0,

1

(φ̃2 − b)2
− γ (1 − λ̃)f ′(φ̃2) = 0.

Solving for γ , we get
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1 + (δ1 − δ2)(φ1 − b)2

λf ′(φ1)(φ1 − b)2
= 1 + δ2(φ2 − b)2

(1 − λ)f ′(φ2)(φ2 − b)2
= 1 + δ1(φ̃1 − b)2

λ̃f ′(φ̃1)(φ̃1 − b)2

= 1

(1 − λ̃)f ′(φ̃2)(φ̃2 − b)2
. (A.13)

Since f (v) = lnH(v), (v − b)2f ′(v) = (v−b)2

(v−v )
is strictly increasing in v. Using the fact that λ̃ >

λ � 1 − λ > 1 − λ̃, we can argue that any candidate solution to (A.13) must be such that δ1 > 0
and δ2 > 0, that is (because Gα = Gβ), φ1 = φ2 = φ̃1 = φ̃2. Indeed, consider first the third and
fourth expressions in (A.13). Since λ̃f ′(φ̃1)(φ̃1 − b)2 > (1 − λ̃)f ′(φ̃2)(φ̃2 − b)2, δ1 > 0. Next,
consider the second and fourth expressions. Since (1−λ)f ′(φ2)(φ2 −b)2 > (1− λ̃)f ′(φ̃2)(φ̃2 −
b)2, δ2 > 0 must hold.

Thus, the KT conditions imply that φ1 = φ2 = φ̃1 = φ̃2 is the only candidate solution to
the problem of maximizing (A.9) subject to (A.10) to (A.12). The Kuhn–Tucker conditions are
necessary for an optimum when the constraint qualification is satisfied. Here, the constraint qual-
ification comes down to the linear independence of the vectors in[

λ (1 − λ) −λ̃ −(1 − λ̃)

−1 0 1 0
1 −1 0 0

]
.

The matrix is of rank 3 so the constraint qualification is satisfied.
Finally, we need to show that any such solution corresponds to a maximum. To do so, consider

a small deviation from φ1 = φ2 = φ̃1 = φ̃2, that satisfies Gα = Gβ and

φ̃1(b) � φ1(b) � φ2(b) � φ̃2(b). (A.14)

Differentiating totally λf (φ1) + (1 − λ)f (φ2) − λ̃f (φ̃1) − (1 − λ̃)f (φ̃2) = 0 implies dφ̃2 =
1

1−λ̃
[λdφ1 + (1 − λ)dφ2 − λ̃dφ̃1]. Therefore,

d

[
1

φ1 − b
+ 1

φ2 − b
− 1

φ̃1 − b
− 1

φ̃2 − b

]

= 1

(φ1 − b)2

[−dφ1 − dφ2 + dφ̃1 + dφ̃2
]

= 1

(φ1 − b)2

[
λ + λ̃ − 1

1 − λ̃
dφ1 + λ̃ − λ

1 − λ̃
dφ2 − (2λ̃ − 1)

1 − λ̃
dφ̃1

]
.

From (A.14) and the fact that λ̃ > λ � 1
2 ,

λ + λ̃ − 1

1 − λ̃
dφ1 + λ̃ − λ

1 − λ̃
dφ2 − (2λ̃ − 1)

1 − λ̃
dφ̃1 � λ − λ̃

1 − λ̃
dφ1 + λ̃ − λ

1 − λ̃
dφ2 � 0.

Thus, the net effect of any perturbation around the candidate solution is negative (strictly so,
unless the perturbation is such that dφ1 = dφ2 = dφ̃1 = dφ̃2). We conclude φ1 = φ2 = φ̃1 = φ̃2
is a local (and global, given that there is no other candidate solution) optimum. The value of
the objective function at the optimum is equal to zero. Since the real constraint on the inverse
bid functions is actually stronger that the inequalities φ̃1 � φ1 � φ2 � φ̃2 (one inequality at least
must be strict), we conclude that 1

φ1−b
+ 1

φ2−b
− 1

φ̃1−b
− 1

φ̃2−b
is always strictly negative when

Gα = Gβ , that is G′
α <

G′
β . End of proof of claim 2. This also concludes step 2.
Gα Gβ



E. Cantillon / Games and Economic Behavior 62 (2008) 1–25 19
Steps 1 and 2 together imply that Gα(b) < Gβ(b) for all b on the interior of their common
support. Therefore, Rf (β) < Rf (α). �
A.2. Proof of Theorem 4

Theorem 4 (N = 2). Consider any asymmetric configuration of bidders (F1,F2) where F1
and F2 are uniform distributions over [v 1, v̄1] and [v 2, v̄2] respectively, where v 1 � v 2 and
v̄1 � v̄2. Then Rf (F1,F2) < Rf (F,F ) as long as the supports of F1 and F2 differ.

Proof. We need to consider two cases.
Case 1. v̄1 < v 2 and the equilibrium is degenerate, i.e. in any equilibrium, bidder 2 bids v̄1

for all realizations of his valuation. Bidder 1 never wins and submit bids on [v 1, v̄1] that make
bidding v̄1 a best response for bidder 2 (Example 1 was a special case of such a degenerate
equilibrium). In that case, Rf (F1,F2) = v̄1 < Rf (F,F ) since F has support over [v 2, v̄2].

Case 2. The equilibrium is non-degenerate. In that case, it is characterized by a system of
differential equations with boundary conditions. The rest of the proof deals with this case.

Let (φ1, φ2) denote the equilibrium inverse bid function under (F1,F2) (with support on
[b, b̄]) and let (φ,φ) denote the equilibrium inverse bid functions in the benchmark auction
(with support on [b∗, b̄∗]). Let G(b) = F1(φ1(b))F2(φ2(b)) and G∗(b) = F(φ(b))2.

Step 1. b � b∗ and G(b) > G∗(b) in a neighborhood to the right of b∗.

Proof. When v 1 < v 2, b ∈ (v 1, v 2) (Maskin and Riley, 2003, Lemma 3) and b∗ = v 2 (the
minimum valuation of the benchmark distribution). Hence, G(b) > G∗(b) to the right of b∗.
When v 1 = v 2, the claim follows from the analytical solution presented in Griesmer et al. (1967).
Without loss of generality, let v 1 = v 2 = 0. Griesmer et al. show that, for v̄2 > v̄1, the inverse

bidding functions are given by φ1(b) = 2b

1+Cb2 and φ2(b) = 2b

1−Cb2 where C = v̄2
2−v̄2

1
v̄2

1 v̄2
2

> 0.15 Thus

G(b) = 1
v̄1v̄2

4b2

1−C2b4 . On [0, v̄1], the benchmark distribution is given by F(v) = v√
v̄1v̄2

. Using

the well-known solution for the symmetric FPA, b(v) = 1
F(v)

∫ v

0 x dF(x) = v
2 on [0, v̄1]. Thus,

G∗(b) = 1
v̄1v̄2

4b2. The claim follows because 1
v̄1v̄2

4b2

1−C2b4 > G∗(b) = 1
v̄1v̄2

4b2. End of step 1. �
Step 2. G(b) = G∗(b) for b > b ⇒ G′(b)

G(b)
>

G∗′
(b)

G∗(b)
as long as φ1(b) < φ2(b).

Proof. By assumption, F1(v) = v−v 1
v̄1−v 1

, F2(v) = v−v 2
v̄2−v 2

and F(v)2 � (v−v 1)(v−v 2)

(v̄1−v 1)(v̄2−v 2)
.16 Hence,

G(b) = G∗(b) implies(
φ1(b) − v 1

)(
φ2(b) − v 2

)
�

(
φ(b) − v 1

)(
φ(b) − v 2

)
. (A.15)

Using bidders’ first-order conditions, the inequality G′(b)
G(b)

>
G∗′

(b)
G∗(b)

can be rewritten as

1

φ1(b) − b
+ 1

φ2(b) − b
>

2

φ(b) − b
. (A.16)

15 Griesmer et al.’s solution is reproduced in a separate appendix available at http://www.ssrn.com and at
http://www.ecares.org/ecantillon.html.
16 F(v)2 = (v−v 1)(v−v 2) when v � v̄1.
(v̄1−v 1)(v̄2−v 2)
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Fig. 1. Iso-level curves for f and g.

We want to show that (A.15) implies (A.16) as long as φ1(b) < φ2(b). First note that f (φ1, φ2) =
(φ1 − v 1)(φ2 − v 2) has a convex upper contour set and that g(φ1, φ2) = 1

φ1−b
+ 1

φ2−b
has a

convex lower contour set. Moreover, f is symmetric around the 45◦ line through (v 1, v 2) and
g(φ1, φ2) is symmetric around the origin. In particular, this means that the slope of the iso-level
curve f (φ1, φ2) at the 45◦ line through (v 1, v 2) is equal to −1, and the slope of the iso-level
curve of g(φ1, φ2) through the 45◦ line from the origin is equal to −1. Finally, whenever the
iso-level curves f and g cross at φ1 < φ2, the slope of the iso-level curve g is steeper than the
slope of the iso-level curve f . Indeed, consider the following set of inequalities:

∣∣∣∣dφ2

dφ1

∣∣∣∣
f

= φ2 − v 2

φ1 − v 1
� φ2 − b

φ1 − b
<

φ2 − b

φ1 − b
<

(
φ2 − b

φ1 − b

)2

=
∣∣∣∣dφ2

dφ1

∣∣∣∣
g

(A.17)

where the first inequality comes from v 1 � b � v 2, the second inequality comes from the fact
that φ2−b

φ1−b
is increasing in b when φ1 < φ2, and the last inequality follows from φ2 > φ1. These

are represented in Fig. 1.
Consider any value for the pair (φ1, φ2) such that φ1 < φ2, for example, point A in Fig. 1.

Then the lowest value of φ consistent with (A.15) is at point B , and (A.17) ensures that B lies
on a lower iso-level curve of g than A.17 Hence (A.16) must hold. End of step 2. �

From Lemma 1, we know that φ1(b) < φ2(b) on (b, b̄). Thus step 1 and step 2 together imply
that G∗(b) < G(b) for all b ∈ (b, b̄). Rf (F1,F2) < Rf (F,F ) follows. �
A.3. Proof of Theorem 5

Theorem 5 (N = 2). Consider any asymmetric configuration of bidders (F1,F2), where Fi =
(v−v )α

(v̄i−v )α
, for α > 0. Then Rf (F1,F2) < Rf (F,F ) if v̄1 �= v̄2.

17 When v 1 = v 2, the upper contour set of g is included in the lower contour set of f .
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Proof. Without loss of generality, let v = 0, v̄2 = 1 and v̄1 ∈ (0,1). Plum (1992) has shown that
the equilibrium bidding functions are given by

bi(v) = 1 − (1 − civ
α+1)

α
α+1

civα
where ci = 1

v̄i
α+1

− 1

v̄j
α+1

, i �= j. (A.18)

The benchmark distribution is given by

F(v) =
{

vα

v̄1
α
2

for v ∈ [0, v̄1],
v

α
2 for v ∈ (v̄1,1].

Let b̄(v̄1, α) and b̄∗(v̄1, α) denote the upper bound to equilibrium bids in configuration (F1,F2)

and (F,F ), respectively. The lower bound to equilibrium bids is the same in both configurations
and denoted b = 0.

Claim 1. b̄(v̄1, α) < b̄∗(v̄1, α) for all α > 0 and v̄1 ∈ (0,1).

Proof of Claim 1. Using the explicit solution for an equilibrium in a symmetric auction,

b̄∗(v̄1, α) =
1∫

0

x dF(x) = 1 −
v̄1∫

0

F(x)dx −
1∫

v̄1

F(x)dx = α

α + 2
+ α

(α + 1)(α + 2)
v̄

α
2 +1

1 .

From (A.18), b̄(v̄1, α) = v̄1(1−v̄α
1 )

(1−v̄α+1
1 )

. It is easy to check that limv̄1↑1 b̄∗(v̄1, α) = α
α+1 =

limv̄1↑1 b̄(v̄1, α) and limv̄1↑1 b̄∗′(v̄1, α) = α
2(α+1)

= limv̄1↑1 b̄′(v̄1, α). Moreover, b̄∗ is a convex

function of v̄1. If we can prove that b̄ is a concave function of v̄1, we will have proved the claim,
since both functions are equal and have equal derivatives at v̄1 = 1. Now,

b̄′′(v̄1, α) = (1 + α)v̄α−1
1

(1 − v̄α+1
1 )3

[
(2 + α)v̄1 − α + αv̄α+2

1 − (2 + α)v̄α+1
1

]
.

Denote by κ(v̄1, α) the term in the last parenthesis of this expression. We want to show that κ < 0
for all α > 0 and for all v̄1 ∈ (0,1). Note that κ(0, α) < 0 and κ(1, α) = 0. Thus κ(v̄1, α) < 0 for
all v̄1 ∈ (0,1) if

d

dv̄1
κ(v̄1, α) = (α + 2)

(
1 − (α + 1)v̄α

1 + αv̄α+1
1

)
> 0.

This inequality holds because d2

dv̄2
1
κ(v̄1, α) < 0 and d

dv̄1
κ(1, α) = 0. Thus b̄′′(v̄1, α) < 0 for all

α > 0 and for all v̄1 ∈ (0,1). Claim 1 follows. �
Claim 2. G∗(b) � G(b) for b ∈ (b, min{b̄, b̄∗}) ⇒ G∗ ′(b)

G∗(b)
<

G′(b)
G(b)

.

Proof of Claim 2. The argument is basically the same as the argument in step 2 of Theorem 4.
By definition, G∗(b) � G(b) implies φ2 � φ1φ2.18 From bidders’ FOCs G′(b)

G(b)
= 1

φ1−b
+ 1

φ2−b

18 Even if φ > v̄1 since F(φ)2 = F1(φ)F2(φ) � φ2α

v̄ α .

1
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Fig. 2. Iso-level curves.

and G∗′(b)
G∗(b)

= 2
φ(b)−b

. Figure 2 represents the iso-level curves for φ1φ2 and 1
φ1−b

+ 1
φ2−b

in the

(φ1, φ2) space. Note that, at φ1 = φ2, the lower contour set of 1
φ1−b

+ 1
φ2−b

is contained in
the upper contour set of φ1φ2. Consider any b such that G∗(b) � G(b). Since φ1 �= φ2, the
corresponding values of the inverse bidding functions are represented by A (for φ(b),φ(b)) and
(for example) B (for φ1(b),φ2(b)). Thus G′(b)

G(b)
>

G∗′(b)
G∗(b)

. �

Claims 1 and 2 allow us to complete the argument. By Claim 1, G∗(b) < G(b) close to b̄.
Claim 2 implies that G∗ and G cross at most once. Towards a contradiction, suppose this is the
case, that is, G∗(b) > G(b) on the interval (b, b̂) for some b̂ < b̄. This implies G∗′(b)

G∗(b)
� G′(b)

G(b)

must hold for some b in (b, b̂) (indeed, if G∗′(b)
G∗(b)

<
G′(b)
G(b)

for all b ∈ (b, b̂), G∗(b) < G(b) for all

b ∈ (b, b̂)). Claim 2 then implies G∗(b) < G(b) at this point, a contradiction. Thus G∗(b) < G(b)

for all b. �
Appendix B. Computations for Example 4

We need to compute

R =
8∫

4

8∫
4

max
{
J (v1), J (v2),0

}
f (v1)f (v2)dv1 dv2,

where

f (v) =
{ 1

2 , v ∈ [4,5],
1

4
√

v−4
, v > 5

and
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Fig. 3. Virtual valuation in the symmetric benchmark.

J (v) =
{

2v − 6 for v ∈ [4,5],
3v − 8 − 4

√
v − 4 for v > 5

(J is represented in Fig. 3). Since J (v) > 0 and since the environment is symmetric, R can be
rewritten as

R = 2

8∫
4

J (v)Pr
(
J (v̂) < J (v)

)
f (v)dv, (B.23)

where Pr(J (v̂) < J (v)) stands for the probability that a valuation draw from F has a virtual
valuation lower than J (v).

Define v∗ such J (v∗) = 3v − 8 − 4
√

v − 4 = 4 (see Fig. 3). We have v∗ = 52
9 and J (·)

monotonically increasing over [ 52
9 ,8]. Therefore, Pr(J (v̂) < J (v)) = F(v) for all v � v∗. Sim-

ilarly, define v∗∗ such that 2v∗∗ − 6 = 3. We have v∗∗ = 4.5 and Pr(J (v̂) < J (v)) = F(v) for
v � 4.5.

To compute the expression for Pr(J (v̂) < J (v)) when v ∈ (v∗∗, v∗), we proceed as follows.
When v ∈ (v∗∗,5), Pr(J (v̂) < J (v)) = F(v)+F(v2)−F(5), where v2 > 5 is such that J (v2) =
J (v). When v ∈ (5, v∗∗), Pr(J (v̂) < J (v)) = F(v1) + F(v) − F(5), where v1 < 5 is such that
J (v1) = J (v).

v ∈ (
v∗∗,5

): J (v2) = 3v2 − 8 − 4
√

v2 − 4 = 2v − 6

⇔ v2 = 14

9
+ 4

9

√
6v − 26 + 2

3
v,

v ∈ (
5, v∗∗): J (v1) = 2v1 − 6 = 3v − 8 − 4

√
v − 4 ⇔ v1 = 3

2
v − 1 − 2

√
v − 4.

We can now rewrite (B.23) as
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R = 2

4.5∫
4

(v − 3)(v − 4)

2
dv + 2

52
9∫

4.5

f (v)J (v)Pr
(
J (v̂) < J (v)

)
dv

+ 1

4

8∫
52
9

(3v − 8 − 4
√

v − 4)dv

= 3.4507 +
5∫

4.5

(2v − 6)

(
v − 4

2
+ 1

2

√
−22

9
+ 4

9

√
6v − 26 + 2

3
v − 1

2

)
dv

+
52
9∫

5

(3v − 8 − 4
√

v − 4)
1

2
√

v − 4

(
3

4
v − 3 − 1

2

√
v − 4

)
dv

= 3.4507 + 0.83549 + 0.52191

= 4.8081.

(The integrals were evaluated numerically with Maple in Scientific Workplace.)
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