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 A buyer seeks to procure a good characterized by its price and its quality from suppliers who have
 private information about their cost structure (fixed cost and marginal cost of providing quality).
 We characterize the buyer's optimal buying mechanism. We then use the optimal mechanism
 as a theoretical and numerical benchmark to study simpler buying procedures such as scoring
 auctions and bargaining. Scoring auctions can extract a significant proportion of the buyer's
 strategic surplus (the difference between the expected utility from the optimal mechanism and the

 efficient auction). Bargaining does less well and often does worse than the efficient auction.

 1. Introduction

 ■ Procurement rarely involves considerations based solely on price. Instead, concerns about
 the quality of the good or service provided are often important to the final decision. In this
 article, we consider how a buyer who cares about quality should structure his purchasing process
 when suppliers compete for a single procurement contract. We ask two questions: first, what does
 the optimal procurement mechanism look like? And, second, how well do simpler, empirically
 relevant mechanisms perform relative to a benchmark constructed using the optimal and efficient
 mechanisms?

 When suppliers' private information about their costs can be captured by a one-dimensional
 parameter, the answer to the first question is well known (Laffont and Tiróle, 1987; Che, 1993). In
 addition, Che (1993) provides a partial answer to the second question by showing that a scoring
 auction implements the optimal mechanism. In a scoring auction, the buyer announces the way he
 will rank different offers, that is, the scoring rule; suppliers submit an offer on all dimensions of
 the product, and the contract is awarded to the supplier who submitted the offer with the highest
 score according to the scoring rule. This article extends the analysis of the first question to
 environments with multidimensional private information and answers the second question more
 exhaustively and for several alternative procedures.
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 Conducting procurement when factors in addition to price matter involves moving toward
 what practitioners often refer to as "complex procurement." Large-scale defense acquisitions
 are an extreme example of complex procurement - the product involves many dimensions, with
 varying degrees of contractibility, and renegotiation of the contract is expected at many stages. At
 the other extreme is the acquisition of basic stationery by a corporation - a pencil is a simple thing

 and price is the only factor that matters for the buyer. The mechanisms used in practice to conduct

 complex procurement leverage, in varying degrees, the potential competition among suppliers
 and the scope for flexibility in product design. When evaluating the performance of simple
 mechanisms, we consider two popular examples: a scoring auction and bargaining. We define
 bargaining as occurring when the buyer negotiates with potential suppliers one at a time (that is,
 negotiations with a supplier must irrevocably break down before another supplier is approached),
 whereas in an auction the buyer can play suppliers off against one another. Bargaining tends
 to allow more flexibility in terms of product design than a scoring auction, at the cost of lower
 competition. Our results, in answer to the second question posed at the start of this article, suggest

 that scoring auctions do better than bargaining and that they often yield a performance close to
 that of the optimal mechanism. That is, leveraging competition among suppliers leads to prices
 that more than compensate for the lower flexibility in product design.

 The two distinguishing features of our model are that suppliers' private information about
 their cost structure is multidimensional and that quality is contractible and endogenously
 determined as part of the procurement process. The U.S. State Highway Authorities' procurement
 for highway repair jobs illustrates these aspects of the contracting environment.1 For high-
 density traffic areas, these agencies care about the cost of the job and the time required for
 completion. A contractor may be able to speed up the job by hiring extra labor, by using some
 equipment more intensively, or by shifting some resources from other jobs. Hence, suppliers'
 quality (here, the time they need to complete the job) is not fixed, but endogenous, with increased
 quality incurring a higher cost. Moreover, this marginal cost of quality is likely to vary across
 potential contractors in a way that is not observable to their competitors. Therefore, it represents
 one dimension of private information. However, there are other sources of unobserved cost
 heterogeneity. These include the contractors' material costs, existing contractual obligations, and
 organizational structure, which combine to determine the fixed cost of undertaking a job at any
 quality level. Thus, private information is likely to be better captured by a multidimensional
 parameter.

 We first derive the optimal procurement mechanism in a model where each potential supplier
 has private information about two components of her cost structure: her fixed cost and her marginal

 cost of providing quality. Costs on each dimension can be high or low, and we allow for any pattern

 of correlation between a supplier's fixed cost and her marginal cost. Across suppliers, costs are
 independently distributed. The buyer's objective is to maximize his expected utility subject to the
 suppliers' participation and incentive compatibility constraints.

 The optimal procurement mechanism differs significantly from its counterpart in one-
 dimensional environments. It depends finely on the exact parameters of the problem, including
 the number of suppliers. Moreover, unlike its one-dimensional counterpart, it is not amenable
 to implementation by a simple-looking auction format. The source of these discrepancies can
 be traced back to the well-known endogeneity of the direction in which incentive compatibility
 constraints bind in multidimensional screening problems.

 The fragility of the intuitions gained from one-dimensional models is endemic in research
 on multidimensional screening, and it can leave the economist interested in the application
 of mechanism design on unsure footing. In this article, we take a new approach, using the
 characterization of the optimal mechanism to construct a meaningful benchmark to investigate
 the performance of practical and simpler buying procedures. In doing so, we suggest one way

 1 See, for instance, Arizona Department of Transport (2002), Bajari and Lewis (2009), and Herbsman, Chen, and
 Epstein (1995).
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 in which results from the multidimensional screening literature can be used to constructively
 advance our understanding of mechanisms used in practice.

 This benchmark role plays out at two levels. At the theoretical level, we can compare the
 allocation (probabilities of getting the contract and qualities delivered) of the optimal mechanism
 with the allocation of any other mechanism of interest to understand their advantages and
 disadvantages.

 At a numerical level, the characterization of the optimal mechanism contributes to solving
 what is essentially a free-parameter problem when interpreting numerical comparisons. At
 first glance, there are at least two candidates for benchmarking numerical simulations of the
 performance of simple mechanisms: the optimal mechanism and the efficient mechanism.
 Unfortunately, neither of these candidate benchmarks is useful on its own. To illustrate, suppose
 that, for some set of parameters, the optimal mechanism generates an expected utility for the
 buyer of 2, while the mechanism of interest returns 1 . This looks like a 50% decrease in expected
 utility. However, by adding 9 to the buyer's utility function, we could well generate expected
 utilities of 1 1 and 10, respectively. Now the decrease looks like only 9%. We create a benchmark
 that is immune to the distortions in the previous example by looking at the difference between
 the expected utility generated from the optimal mechanism and the expected utility from the
 (buyer-optimal) efficient auction. This difference is the surplus available to a strategic buyer. We
 use this measure of "strategic surplus" as our benchmark against which to evaluate second-best
 mechanisms. Suppose that the efficient mechanism returns an expected utility of 0 (or 9). This
 allows us to conclude that the mechanism of interest captures 50% of the rents available from
 being a strategic buyer. This benchmark is both economically meaningful and free from the
 influence of (positive) affine transformations of the utility function. The characterization of the
 optimal mechanism is crucial to constructing this benchmark.

 We apply this new approach to evaluate the performance of scoring auctions and bargaining.
 Our motivation for looking at these procedures is twofold. First, Asker and Cantillon (2008) have
 shown that scoring auctions dominate price-only auctions, beauty contests, and menu auctions.
 Thus, scoring auctions are an obvious candidate for a simple second-best procedure. Second,
 buyers often adopt a less structured form of negotiation when quality matters, and our model
 of bargaining bounds many models of negotiation in the literature. In drawing the distinction
 between an auction and a bargaining process, we define bargaining as a procedure in which a
 buyer approaches suppliers sequentially and cannot return to a supplier once negotiation breaks
 down. This means suppliers do not compete directly against each other, in contrast to auctions.

 We characterize the allocations that can be implemented by a scoring auction (Theorem
 2) and derive the optimal bargaining mechanism when a buyer bargains with a single supplier
 (Theorem 3) or several suppliers sequentially (Theorem 4). By construction, both procedures
 underperform relative to the optimal mechanism. The comparison with the allocation generated
 by the optimal mechanism highlights several characteristics of these alternatives. First, scoring
 auctions can replicate the allocation probabilities of the optimal mechanism in many cases.
 Where scoring auctions fall short of the optimal mechanism is in their inflexibility in terms of
 qualities. Second, the efficient mechanism can be implemented by a scoring auction. Thus, scoring
 auctions can always do weakly better than the efficient mechanism. Third, bargaining is inherently
 inefficient and can never replicate the allocation probabilities of the optimal mechanism. However,
 we identify two classes of environments where they can do better than the efficient mechanism
 thanks to the distortion in production or in allocation probabilities that they generate.

 We further investigate these questions numerically by evaluating the proportion of the
 strategic surplus that these simpler procedures capture, across a wide range of environments. To
 do this, we compute an upper bound to the expected utility from these procedures by deriving
 the optimal scoring auction and the optimal bargaining mechanism. We find that the optimal
 scoring auction does very well and, on average, captures more than two thirds of the strategic
 surplus. By contrast, bargaining does very badly and often even worse than the efficient auction,
 except when the fixed and marginal costs are highly correlated, or when there is little uncertainty
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 about suppliers' fixed costs. Because these two classes of environments are near one-dimensional
 environments, it seems safe to claim that an efficient auction generally dominates bargaining
 when private information is multidimensional.

 To further explore the reasons behind the poor performance of bargaining and the strong
 performance of scoring auctions, we extend our bargaining model to allow the buyer to make an
 offer to one supplier after negotiations have failed with all suppliers. This recall feature introduces

 several new effects including a potential loss of commitment power by the buyer and, as a result,
 multiple equilibria. If we focus on the buyer-optimal sequential equilibrium, we find that the
 possibility of recall greatly improves the expected utility of the buyer. We interpret this result as

 underscoring the value of any competition among suppliers in procurement settings.

 D Related literature. This article is related to the literatures on procurement and on
 multidimensional screening. The literature on procurement is organized around several themes,
 including the question of how to take factors other than price into account in the procurement
 process (Laffont and Tiróle, 1987; Che, 1993; Branco, 1997; Ganuza and Pechlivanos, 2000;
 Rezende, 2009; de Frutos and Pechlivanos, 2004), the impact of the potential noncontractibility
 of quality (Klein and Leffler, 1 98 1 ; Taylor, 1 993 ; Manelli and Vincent, 1 995 ; Morand and Thomas,

 2002; Che and Gale, 2003), and the impact of moral hazard and renegotiation (Bajari and Tadelis,
 2001; Bajari, McMillan, and Tadelis, 2008). See Che (2008) for an overview.

 Our model fits squarely into the first group and we abstract from the other issues. Our
 contribution to this literature is twofold. First, we extend prior analyses of optimal procurement
 to the richer environment where private information is multidimensional. Laffont and Tiróle
 (1987) and Che (1993) characterize the optimal buying mechanism when private information
 is one-dimensional (the marginal cost of providing quality). Under some regularity conditions,
 the optimal buying scheme distorts the quality provided by the suppliers downward, relative to
 their first-best levels. The optimal level of distortion is independent of the number of suppliers, a
 property known as the "separation between screening and selection" (Laffont and Tiróle, 1987).
 In addition, except for the presence of a reserve price, the contract is always allocated efficiently.
 Finally, Che shows that a scoring auction with a scoring rule that is linear in price implements the

 optimal scheme. Our analysis shows that these results depend heavily on the assumption of one-
 dimensional signals: none of these properties are robust when we move to a multidimensional
 setting. Second, we evaluate existing buying procedures against the benchmark constructed
 using the optimal and efficient mechanisms. Other articles compare the performance of different
 procedures: Dasgupta and Spulber (1989), Che (1993), and Chen-Ritzo et al. (2005) compare the
 scoring auction, which turns out to be optimal in their setting, with price-only auctions; Asker and

 Cantillon (2008) compare the scoring auction with price-only auctions, beauty contests, and menu
 auctions; Manelli and Vincent (1995) and Bulow and Klemperer (1996, 2009) compare (different
 models of) negotiation with auctions. Except for Asker and Cantillon (2008), these articles are
 restricted to one-dimensional private information. Moreover, our analysis goes beyond simply
 ranking procedures, first, by providing a quantitative assessment of the difference in expected
 utility and, second, by identifying environments where these alternative procedures are likely to
 perform well.

 This article also contributes to the literature on multidimensional screening. Rochet and
 Stole (2003) present a survey of the contracting applications of multidimensional screening.
 Auction applications include the optimal multiunit auction problems studied by Armstrong
 (2000), Avery and Hendershott (2000), and Malakhov and Vohra (2009), and the optimal
 auction with externalities studied by Jehiel, Moldovanu, and Stachetti (1999). Unlike contracting
 environments, our problem involves a resource constraint because the contract can be allocated
 to only one supplier. Unlike multiunit auction environments, quality in our problem introduces
 some nonlineariry. Hence, none of the existing characterization results apply to our problem, and
 the method we use to solve for the solution is somewhat different from the methods used in these

 articles (even if the underlying principle is the same).
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 Through our emphasis on second-best mechanisms, our work echoes the research agenda laid
 out in Wilson (1993) of identifying simple and robust second-best mechanisms. Our contribution
 here is in leveraging the characterization of the optimal mechanism to analyze second-best
 candidates in auction environments with multidimensional private information.

 2. Model

 ■ We consider a buyer who wants to buy an indivisible good for which there are N potential
 suppliers. The good is characterized by its price, p, and its quality, q.

 D Preferences. The buyer values the good (p, q) at v(q) - p, where vq > 0 (we assume that
 vq(0) = oo and lim^oo vq(q) = 0 to ensure an interior solution) and vqq < 0. Supplier /'s profit
 from selling good (p,q) is given by p - 6[ -Q[q, where 0[ e {([v 6 {] and 6^ e {6_2, 02} (0_' < ®'
 andO < 0_2 < 02). For future reference, let A0' = 0' - 0_x and A02 = 02 - 0_2. Given the binomial
 support of 0' and 02, there are four supplier types: {Ou 62), (0P 02), (0',0_2), (#P #2), which we
 denote, for brevity, hH, IH, hL, and IL. We will sometimes use (Olk, 02k) to denote supplier
 type k. For example, (0Uh, Quh) = (#i » #2). Note that the buyer and the suppliers are risk neutral.

 D Social welfare. Let Wk(q) = v(q) - Oik - 62kq, the social welfare associated with giving
 the contract to type k with quality q. Define WkFB = maxq Wk(q). Given the single crossing
 condition, q™ = q™ < q™ - q[LB (to save on notation, we will use the shorthand notation ~q
 and q to describe the first-best levels of qualities, ~q < q).

 Our assumptions, thus far, yield an incomplete ordering of types in terms of the first-best
 levels of welfare they generate. To simplify the analysis, we restrict attention to the case where
 W™ < W™ '. The natural ordering of types is, thus, IL > hL > IH > hH. Importantly, the
 assumption that W™ < W™ implies AOi - A02q < 0, while the sign of A6' - A62~q remains
 ambiguous.2 This assumption on the ordering of first-best welfares does not affect the method we
 use (in particular, Theorems 2-A do not need this assumption). It mainly reduces the number of
 cases we need to consider when we characterize the optimal mechanism (Theorem 1). Under this
 assumption, having a low marginal cost for delivering a higher-quality product is more important
 than having a low fixed cost, at least in the first-best solution. This case includes, as a limit, the
 case where firms differ only in their marginal-cost parameter, which has been studied by Laffont
 and Tiróle (1987), Che (1993), and Branco (1997).

 D Information. Preferences are common knowledge among suppliers and the buyer, with
 the exception of suppliers' types, (0¡, 0£), i = 1, . . . , N9 which are privately observed by each
 supplier. Types are independently and symmetrically distributed across suppliers, in the sense
 that the probability of supplier / being of some type is independent of other suppliers' types, but
 the ex ante distribution of types is the same for all suppliers. Thus, we can write the probability
 of each type as ak > 0, k e {hH, IH, hLJL). We do not put any restriction on the ak% except
 for the fact that they need to sum to one. Any pattern of correlation between a supplier's fixed
 cost and her marginal cost is allowed.

 Note. The 2-by-2 discrete type space considered here is a concession to the practical
 difficulties of optimal screening problems in multidimensional environments. Two alternative
 approaches have been used in the literature. Armstrong (1996) and Rochet and Choné (1998)
 solve a nonlinear pricing problem in a continuous type space by placing sufficient restrictions
 on the distribution of types to pin down ex ante the direction in which incentive compatibility
 constraints bind. An alternative route is to assume highly multidimensional private information
 and leverage a law of large numbers to reduce this multidimensional information in something
 that converges to one-dimensional private information (Armstrong, 1999b). An advantage of the
 2-by-2 setting is that it does not put restrictions on the direction of binding incentive compatibility

 2 A6>, - A#2<7 < 0 follows from noting that v{q) -6x-0_2q_= WhFLB > W™ > v(q) - 6_ x - 62q_.
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 constraints. This allows us to explore all the economic richness that multidimensional information
 introduces. In our conclusions, we discuss the applicability of our results to richer informational
 environments.

 3. Characterization of the optimal mechanism
 ■ The buyer's problem is to find a mechanism that maximizes his expected utility from the
 procurement process. For simplicity, we assume that the buyer buys with probability one (that is,
 we assume non-exclusion).3 A direct revelation mechanism in this setting is a mapping from the

 announcements of all suppliers, {0[, 0^}^=i, into probabilities of getting the contract, the level of
 quality to deliver, and a money transfer.

 Given that the buyer's preference over quality levels is strictly concave, there is no loss of
 generality in restricting attention to quality levels that are only a function of suppliers' types. Let

 qk denote the quality level to be delivered by a type-A: supplier. This, together with suppliers'
 risk neutrality, implies that suppliers' payoffs and thus, behavior, depend only on their expected
 probabilities of winning and their expected payment. Let xk be the probability of winning the
 contract conditional on being of type k, and let mk be the expected payment she receives. Finally,
 let Uk denote type k's equilibrium expected utility. We have: Uk - mk- xk(0lk + Qlkq¿).

 With these simplifications and notation, the buyer's expected utility from the mechanism is
 given by

 Ai Y, ak{xkWk{qk)-Uk). (1)
 ke{h H,lH,hL, IL)

 The buyer seeks to maximize this expression over contracts (xk, qk, Uk), subject to suppliers'
 incentive compatibility (IC) constraints:

 Uk > Uj + Xj(0XJ - 9lk) + xjqj(02j - 02k) for all *, j e {hH, IH, hL, IL), (2)

 individual rationality (IR) constraints:

 Uk>0 for dilk e {hH9lH,hL,lL}, (3)

 and subject to the feasibility constraint that the probability of awarding the contract to a subset
 of the types is always less than or equal to the probability of such types in the population:

 N^2ockxk< 1 - f 1 -J2ak) for a11 subsets K of ihH> lH,hL,lL}. (4)
 keK ' keK /

 Finally, nonexclusion imposes that

 Nj2<*kXk =l- (5)
 ke{hH,lH,hLJL]

 Border (1991) guarantees that the feasibility constraint is both necessary and sufficient for the
 expected probabilities xk to be derived from a real allocation mechanism. This ensures that the
 solution to the maximization problem of (1) subject to (2), (3), (4), and (5) is implementable.

 The buyer's problem has 4 individual rationality constraints, 12 incentive compatibility
 constraints, and 15 feasibility constraints. We can simplify them somewhat with the following
 lemmas:

 Lemma 1. Consider the feasibility constraints (4), and define an «-type constraint as a feasibility
 constraint with the relevant subset K having n elements. The following statements hold:

 3 Unlike environments with continuous multidimensional types (e.g., Armstrong, 1996), the assumption of
 nonexclusion is not particularly restrictive in discrete type environments. It is easy to find parameter values such that all
 virtual welfares in the solution are positive, making nonexclusion optimal (this can be seen in expression (6), below).
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 (i) At most, one 1-type constraint binds; at most, one 2-type constraint binds; and, at most, one
 3-type constraint binds,

 (ii) These binding constraints are nested, in the sense that the type in the binding 1 -type constraint

 must belong to the binding 2-type constraint, and so on.

 The proof of Lemma 1 is in Appendix A. The intuition is as follows. Suppose that, at the
 solution, the contract is allocated according to the following order of priority: IL > IH > hL >~
 hH, that is, give the contract to a type IL if there is one, otherwise to a type IH if there is one, and
 so on. This means that the ex ante probability that an IL type gets the contract is the probability that

 there is at least one type IL supplier among the N suppliers, that is, Na[LXiL = 1 - (1 -a¡L)N.
 Thus the 1-type constraint binds for IL. It cannot bind for any other types because a binding
 constraint for another type would imply that that type has priority over all other types in the
 allocation, a contradiction. Next, IL >- 1 H > hL >- h H also means that the contract is allocated
 to a type IL or IH whenever there is one among the TV suppliers. This means that the ex ante
 probability of a type IL or IH winning, N(aiLXiL + a[HxlH), is the probability that there is at least
 one of these types among the suppliers, 1 - (1 - alL - a[H)N . Thus, the 2-type constraint binds
 for {IL, ///}, showing that the binding constraints are indeed nested. Statement (i) of Lemma 1
 suggests that it could be the case that, say, no 1-type constraint binds. This will be the case, for
 instance, if the order of priority is IL ~ I H > hL > hH, that is, IL and IH have priority over
 all the other types, but if there are an IL type and an IH type, the buyer allocates the contract
 among them randomly. In this case, no 1-type constraint binds. Finally, note that the suppliers'
 expected probabilities are weakly aligned with their order of priority in the sense that, if k > j,

 then xk > Xj but if k ~ j, then xk = x7.
 For future reference, denote the winning probabilities resulting from the efficient allocation

 (IL > hL >IH > hH) by x™ , k e {hH, IH, hL, IL}. Denote the winning probabilities for
 types IH and hL resulting from the allocation according to order of priority IL > I H > hL > h H
 hv rmax and diiu rmin üy xlH rmax diiu xhL .

 Standard manipulation of the incentive compatibility constraints and the individual rational-
 ity constraints allows us to order the probabilities of winning in a limited way.

 Lemma 2. At any solution, xlH > xhH, xlL > xhL, and UhH = 0.

 The key difficulty we face in characterizing the solution to the buyer's problem is in
 identifying the set of binding constraints at the optimum together with the associated partition of

 the parameter space. Our approach is to start with the buyer-optimal efficient mechanism. The
 buyer-optimal efficient mechanism is the mechanism that implements the efficient allocation in the

 way most favorable to the buyer. Efficiency requires that qualities are set such that qlL = qhL - q_
 and qiH = qhH =~q, and that the probabilities are set equal to the first-best probabilities, that is,
 xk = x[B for all k. Efficiency does not pin down payments to suppliers when private information is
 discrete. The buyer-optimal efficient mechanism (which we will simply refer to in the remainder
 as "the efficient mechanism") sets payments to maximize the buyer's expected utility while
 satisfying all incentive compatibility constraints. In practice, only two sets of IC constraints bind
 at the efficient mechanism, as the next lemma establishes.

 Lemma 3. When A0{ > A#2#, ICihmh, IChL,hH, and IClLihL bind in the efficient mechanism.
 When AOi < AOjq, IC¡HyhH, IChLJH, and IClL,hL bind (see Figure 1).

 The proof of Lemma 3 can be found in Appendix A. From this starting point, we progressively
 adjust the qualities (the g's) until the buyer's utility is maximized conditional on the x's or until
 a new IC constraint binds. If no new IC constraint binds, we optimize over the jc's and turn our
 attention back to the g's. If a new IC constraint binds, we adjust the x's and g's under the additional

 constraint imposed by the new binding IC constraint. In this way, we progressively reach a point
 where there is no more scope for improvement through either changing the x's or the ¿7's. At this

 point, we will have reached the global maximum as guaranteed by the next lemma. Moreover,

 ©RAND 2010.
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 FIGURE 1

 BINDING CONSTRAINTS IN THE EFFICIENT AUCTION

 IH hH IH
 •

 flf

 (a) (b)

 A0l>A02q AQ<A02q

 TABLE 1 Probabilities of Winning and Quality Levels When A0x - A02q >0

 Solution Probabilities of Winning q¡L qhL qlH qhH

 Condition: x^[A6l - A02q2hH] < x™[A6x - A62q]
 l.l.a xk=x[B £ £ ÏÏ q2hH
 1.1. b xiL=x™ > xlH=x™x > xhL=x™n > xhH=x™ £ £ 1 liti
 1.1. c Xu =xfLB > x™x > xih > xhL > x™n > xhH =x£* q_ q_ (qfH, q) (q2hH, q)
 1.1. d xiL =xfLB > xih =x™x > x™n=xhL > xhH > x£* q_ q_ (qfH, q) (q2hH, q)
 1.1. e Xu =x™ > xih > xhL =xhH > x[* q_ £ (^, ^//) (q2hH, q)
 Condition: x^[A0{ - A02q2hH] > x™[A6x - A02q]
 1.2.a* xk=x™ q_ q_ (q2H, q) (q2hH, q)
 1.2.b* Xu =x[LB > xH > xhL > xih > x™ > xhH = x™ q_ q_ (q2H, q) (q2hH, q)
 1.2.C* xiL =xfLB > xH > xhL =Xih > xfB > xhH =x™ q_ q_ (q2H, q) (q2H, q)
 Other relevant solutions are 1.1. b, 1.1. c, 1.1. d, and l.l.e.

 Additional conditions as well as exact values for the variables in the individual solutions are available in a separate ap-

 pendix posted online. Recall,^ = 2iVgmdLXq{WhH(q) - ahLa+aiL qA62) "àvAq2lH = argmaxq{W¡H(q) - ahLa+ aiL qA62}.

 The notation (q2H, ^) in the q¡H column means <////€ (q]H, ^), (similarly for the qhH column).
 *Under the condition that A6' - AQ2~q > 0, we can tighten the bound on qhH so that qhH e (q'H, qiH)-

 this approach ensures that we cover the entire parameter space because our starting points cover
 the whole space. The sketch of the proof of Theorem 1 illustrates this approach in more detail.

 Lemma 4. The first-order conditions of the Lagrangian of the maximization problem (1) subject
 to (2), (3), (4), and (5) are necessary and sufficient for a global maximum.

 The proof of Lemma 4 is in Appendix A. It allows us to prove the main result of this section:

 Theorem 1. Characterization of the optimal buying mechanism

 Defined = 2Xgmsxq{WhH{q) - a-^q&62} zndqfH = xgmax, {W¡H(q) - a-^qA02}.4

 Part I: When A#i - A#2# > 0, the probabilities of winning and quality levels in the optimal
 mechanism are as given in Table 1 .

 Part II: When A0' - A#2g < 0, the probabilities of winning and quality levels in the optimal
 mechanism are as given in Table 2.

 4 We use the superscript "2" to differentiate this quality from the first-best quality.
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 TABLE 2 Probabilities of Winning and Quality Levels When &0x - '02q <0

 Solution Probabilities of Winning (x's) q¡L q^L qm qhn

 Condition: x™[A6{ - A02q] > x^B[AOl - A92qfH]
 2.1. a xk=x™ q_ q_ qfH q
 2.1.b xlL =x™ > x™ > xhL =xtH > x[» > xhH =x[£ q_ q_ qjH q
 2.1.C xiL = x™ > xhL = x™ > x™ > xih > xhH > x[ß q_ q_ (qfH, qhH) (q¡H, q)
 2.1. d xlL =x™ > x[l > xih =xhL > x™ > xhH > x™ q_ q_ (qfH, qhH) (q2hH, q)
 2.1.e Xu = x[LB > xih > xhL =xhH > x™ q_ q_ (qfH, qhH) (q2hH, q)
 Condition: x™[A0{ - A62q] < x™[AOx - A92qfH]
 The relevant solutions are 1.2.a, 1.2.b, 1.2.c, 2.1.C, 2.1.d, and 2. I.e.

 Additional conditions as well as exact expressions for the variables in the individual solutions are available
 in a separate appendix posted online. Recall, q'H = argmaxq {WhH(q) - ahLa^aiL qA62} and qfH = arg max^
 { WtH(q) - ahLa+aiL qA02}. The notation (qfH, ~q) in the qiH column means qlH e (qfH, ~q) (similarly for the qhH column).

 Sketch of proof. The full proof of Theorem 1 is very long (18 pages). Here we provide only
 a proof for solutions 1 . 1 .a and 1 . 1 .b to illustrate our approach to deriving the full characterization.

 The reader is referred to the online appendix for the full proof.5

 Consider the efficient auction. Let UkJ be the expected utility of a type k pretending she is of
 type j. To ensure incentive compatibility, while minimizing suppliers' rents, suppliers' expected
 utilities in the efficient auction must be set such that Uk = maxy#yt UkJ and UhH = 0.

 From Lemma 3, we need to consider only two cases. If A0' - A02q > 0, the per-supplier
 buyer's expected utility in the efficient auction, J^k ak[xkFB Wk(qk) - Uk], is given by

 <*/rf WlH{qlH) - alHx™k0x + ahHx™ WhH(qhH) + ahLx£* WhL(qhL) - ahLx™qhHA02

 + alLx™ WlL{qlL) - alLx™A0x - alLx™qhHA02

 (where all qualities are initially equal to the first-best qualities) or, to highlight the virtual welfare

 generated by each supplier:

 otIHx^Wm(qIH) + ahHxFhBH 'whH{qhH) - ^AÖ, - "'^""^aJ
 L ahH ®hH J

 + ahLx£* 'whL(qhL)- - A^l + alLx™WlL(qlL). (6) L ahL J

 The rents of suppliers IL and hL depend positively on qhH, and the buyer can increase his expected
 utility by decreasing qhH, ideally until

 q;H = arg max ' WhH(q)

 4 [ OihH OihH J

 Suppose that no new IC constraint binds in the process. (This will be the case if x™[A0i -
 A02q] > x™[A0{ - A02q2hH].)

 Now consider again (6), where we set qhH=q¡H, qlH = q, and qhL = qlL = q_.
 There is no further scope for improvement by distorting qualities. Furthermore, the
 virtual welfare of IL is clearly the largest of all, so that it is optimal to set x[L = x™. However,

 the relative ranking of the virtual welfare of IH and hL is unclear. If WhL(q) - fL-A0l > WlH(q),
 the virtual welfare generated by supplier hL remains larger than that of ///, so the optimal
 allocation is the first-best allocation. This is solution 1.1. a.

 Suppose, instead, that the virtual welfare associated with IH is larger than that associated
 with hL, itself larger than the virtual welfare associated with hH (formally, and referring to

 (6), WlH(q) > WhL(q) - ^AO, > WhH{q2hH) - ^A0, - a-^q2hHA02). In this case, the buyer
 would rather give the contract to supplier IH than to supplier hL, that is, he would like to change

 5 All online materials are available at pages.stern.nyu.edu/~jasker/ and www.ecares.org/ecantillon.html.
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 FIGURE 2

 BINDING IC CONSTRAINTS AT THE SOLUTION WHEN A0, - A02q > 0

 IH hH IH hH IH hH IH hH IH hH
 •

 t

 IL hL IL hL IL hL IL hL IL hL
 1.1. a 1.1 .c 1.1 .e 1.2.a 1.2.C

 1.1. b 1.1. d 1.2.b

 FIGURE 3

 BINDING IC CONSTRAINTS AT THE SOLUTION WHEN A^ - A62q < 0

 IH hH IH hH IH hH IH hH IH hH
 •

 •

 IL hL IL hL IL hL IL hL IL hL
 2.1. a 2.1. b 2.1. e 2.1. c 2.1. d

 1.2.a 1.2.C

 1.2.b

 the order of priority in the allocation. Increasing xlH while decreasing xhL concurrently (keeping
 UihXih + othLxhL + ciux™ constant) does not initially affect any of the virtual welfares, and it
 increases the buyer's expected utility. This process continues until either a new IC constraint
 binds or we have reached the feasibility constraint for xlH : N(c¿iHx™x + oilLx™} = 1 - {othL +
 ahH)N. Suppose that we reach x!H = x™x before any new IC constraint binds. The qualities and
 probabilities are then all optimized given the binding constraints and Lemma 4 guarantees that
 we have reached the global maximum. This corresponds to solution 1.1. b. Solution 1.1. c arises
 if a new IC constraint binds in the process. Solutions 1.1. d and 1.1. e arise when the ordering of
 virtual social welfares is such that type IH is preferred to type hH, which, in turn, is preferred to

 type hL. End of the sketch of the proof.

 Tables 1 and 2 present the main features of the solution. The second column describes
 the probabilities of winning, and the last four columns describe the qualities at the solution (an
 interval means that the optimal level of quality lies in this interval). For instance, solution 1.2.b

 has Xu = xfLB, which is greater than xhL(<x™). This is, in turn, greater than xlH(>x™) and
 xhH = xj%. Both qlL and qhL are at the first-best levels, qhH e (q2hH, ~q) and qlH e (qfH, ~q). Both
 are distorted below the first-best level. The conditions that define each solution depend on the
 resulting binding constraints and virtual welfares, as summarized in Figures 2 and 3. The value
 of the objective function and the value of the control variables at the solution are continuous in
 the parameters of the model.

 The following patterns emerge from the tables. First, because the conditions delimiting
 the different cases depend on the probabilities of winning, the solution depends on the number
 of suppliers, as well as on the usual parameters of the environment (distributions of types and
 cost structure). The dependence of the optimal scheme on the number of suppliers is typical of
 multidimensional environments where the binding IC constraints are endogenous (Palfrey, 1983;
 Armstrong, 2000; Avery and Hendershott, 2000). No such effect is present in one-dimensional
 environments (Laffont and Tiróle, 1987).
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 FIGURE 4

 EXPECTED UTILITY FROM DIFFERENT MECHANISMS: N = 2, a,L = ahL = aIH = ahH = 0.25

 0.5

 0.4

 ^ -^^^ ^^»ï^^^ Optimal Mechanism

 gQ Efficient Auction ^^'^^ il "-••^y-^
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 0 -I
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 Second, there is some downward distortion in the quality provided by the high marginal-cost

 suppliers.6 The quality provided by the low marginal-cost suppliers is never distorted.
 Third, probabilities of winning are also often distorted relative to the efficient auction.

 Specifically, the probabilities of winning of the high marginal-cost suppliers are sometimes
 distorted upward, whereas the probability of winning of low marginal-cost supplier hL is
 sometimes distorted downward. This is because the expected surplus of hL can, in turn, affect the
 information rents of the IL type (whereas ///'s expected surplus may not). As a result, reducing
 xhL (and hence increasing xiH) decreases the information rents of IL. Note that the allocation of
 supplier IL is never distorted.

 Putting these last two aspects together - productive and allocative distortions - we find no
 systematic "bias against quality" in the two-dimensional model, unlike in the one-dimensional
 model (Laffont and Tiróle, 1987; Che, 1993). Although the economic conclusions differ, the
 underlying economic motivation is the same: reducing suppliers' rents. The qualities of the high
 marginal-cost types are distorted downward to reduce the low marginal-cost supplier's benefit
 from imitating them. As illustrated in Figures 3 and 4, all binding constraints between suppliers
 with different marginal costs are from the low marginal-cost supplier to the high marginal-cost
 supplier, so this "trick" is effective. This is also the case in the one-dimensional model, where
 the distortion of high-cost types' quality lowers the informational rents of the low-cost types.
 Similarly, the reason why supplier hL's probability of winning is sometimes below her first-best
 level is to reduce supplier /L's rent. In each case, the optimal level of distortion balances a tradeoff
 between the costs in terms of lost social welfare and the benefits in terms of reduced rents.

 Last, we note that the solution approach differs from that taken in the rest of the literature.

 The optimal multiunit auction problems studied in Armstrong (2000), Avery and Hendershott
 (2000), and Malakhov and Vohra (2009) are linear programming problems. Candidates for a

 6 The finding that quality is only distorted downward is specific to the case W[¿ < W[LB . If W™ > W™, it is
 possible to generate an optimal solution in which qhL is distorted above first-best. This appears to be the only significant
 qualitative distinction between the W¡FHB < W™ and W™ > W™ cases.
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 solution in a linear programming problem are extreme points. The standard solution technique
 is to characterize the parameter space over which these extreme points are, indeed, solutions.
 Our auction problem is not a linear programming problem but, instead, a concave programming
 problem. This is reflected in the solution: both the value of the objective function and the value
 of the control variables are continuous in the parameters of the model.

 Multidimensional screening models that give rise to concave programming problems are
 studied by Dana (1993), Armstrong and Rochet (1999), and Armstrong (1999a), or Laffont,
 Maskin, and Rochet (1987) and Rochet and Stole (2002) for continuous-type analogues. The
 standard solution technique used in these papers is to posit a set of binding constraints and
 characterize the parameter space over which the first-order conditions are satisfied given these
 binding constraints.

 Our problem differs from those considered in these papers in two respects. First, we
 have many more constraints: on top of the standard 4 individual rationality and 12 incentive
 compatibility constraints that these problems have in their discrete form, the auction aspect of
 our problem adds 15 feasibility constraints. Moreover, because suppliers' utility function takes

 the form mk - xk(6' + 0[qk), where xk and qk interact as a multiplier of 6[, the two instruments at
 the disposal of the buyer do not perform a symmetric role as in the models in Dana (1993) and
 Armstrong and Rochet (1999). The consequences are twofold. First, the number of "solutions" -
 that is, configurations of binding constraints at the optimum - is larger. This is seen in Tables
 1 and 2 (Armstrong and Rochet [1999] have, at most, six solutions to consider). Second, it is
 harder to reduce a priori the number of constraints that are likely to bind. By seeking incremental

 improvements from the efficient mechanism, our constructive approach to the characterization of
 the solution guarantees that we cover the entire parameter space.

 4. Scoring auctions
 ■ In practice, implementation of the optimal mechanism requires overcoming at least two
 significant challenges. First, implementation requires precise knowledge of the environment.
 Second, in most instances, implementation of the optimal mechanism using a simple, easily
 explained mechanism is not possible. This limits the extent to which the mechanism can be
 explained to market participants at low cost and also limits the buyer's ability to administer
 procurement at low cost (because administration would require, for example, highly skilled staff).

 These challenges suggest that, for practical purposes, second-best solutions that are simple
 and perform well in a variety of settings are likely to be more useful. Commonly used procedures
 are obvious candidates. They include scoring auctions, price-only auctions with minimum quality
 standards, beauty contests, menu auctions where suppliers can submit several price-quality offers,
 and bargaining. Asker and Cantillon (2008) have shown that scoring auctions yield a higher
 expected utility to the buyer than a price-only auction with minimum standards or a beauty
 contest, and that they dominate menu auctions when a second-price or an ascending format is
 used. Hence, our contenders for second-best procedures are scoring auctions and bargaining. We
 analyze scoring auctions in this section and bargaining in the next two sections.

 In a scoring auction, the buyer announces a scoring rule that is linear in price, S(p, q) =
 v(q) - p (with vq > 0, vqq < 0, and maxv(q) - 0^q admitting a single interior solution),
 suppliers submit price-quality bids (p,q), and the winner is the supplier whose bid generates the
 highest score according to the scoring rule.7 The winner's resulting obligation depends on the
 auction format. In a first-score scoring auction, the winner must deliver a quality level at a price
 that matches the score of his bid. In a second-score scoring auction, the winner must deliver a
 quality level at a price that matches the second-highest score submitted. Scoring auctions are
 increasingly used in public and private procurement and are supported by several procurement
 software packages (see Asker and Cantillon, 2008 for examples and references).

 7 Asker and Cantillon (2008) refer to this auction format as a quasilinear scoring auction to emphasize the linearity
 of the scoring rule in price.
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 D Theoretical properties. Scoring auctions put some additional structure on suppliers'
 bidding behavior. First, given a scoring rule v(q) - p, suppliers choose their bids to maximize
 the score they generate given their profit target, n, that is, they solve mãxipq){v(q) - p) subject
 to p - 0[ - 0l2q = n. Substituting for/? inside the maximizer yields

 max 'v(q) -0[-0i1q-n). (7)

 A property of the solution is that q is independent of it, the profit target, and of 0{, the fixed cost.
 Second, a standard incentive compatibility argument establishes that the ordering of suppliers'
 winning probabilities must correspond to their ability to generate a higher score (intuitively,
 define maxq(v(q) - 0[ - 0l2q) as the supplier's type). Thus, a scoring auction will implement a
 particular allocation if two conditions hold:

 (i) [Production constraint] Given the scoring rule, suppliers maximize (7) by choosing the level
 of quality assigned by the allocation,

 (ii) [Ranking constraint] The ranking of maxq{v(q) - 6[ - d[q' and, thus, the ranking of the
 scores are consistent with the assigned probabilities of winning.

 The next theorem characterizes the set of allocations that can be implemented by a scoring
 auction.

 Theorem 2. An allocation {(xk, qk)}k can be implemented with a scoring auction if and
 only if (1) qlH = qhH, qhL = qlL with qlH = qhH < qhL = qlL, (2) alHxlH + ahLxhL = a¡Hx™ +
 «ai*™, xhH = x™, and xlL = x™ , (3) A0{ - A02qhL < 0 when xhL > x™n, and (4) A0, -
 A02qiH > 0 whenever the allocation is such that xlH > x™ .

 Theorem 2 clarifies the constraints that a scoring auction places on the possible allocations.
 Its proof can be found in Appendix A. The first condition says that two suppliers with the same
 marginal cost of quality must be providing the same level of quality. Moreover, suppliers with a
 lower marginal cost of quality must deliver higher levels of quality. These two properties follow
 from the structure of (7). The second condition says that, at equilibrium, type IL must win over
 any other type, and that type hH must lose against any other type. The reason is that type IL
 generates the highest value for max^fî^g) - 0[ - 6l2q} for any scoring rule and that type hH
 generates the lowest such value. The third and fourth conditions follow from the combination of
 the production constraint and the ranking constraint. Finally, to prove the sufficiency part of the
 claim, we construct a scoring rule that implements the allocation under conditions (l)-(4).

 An immediate consequence of Theorem 2 is that the efficient allocation can be implemented
 by a scoring auction. Such a scoring auction has a scoring rule that corresponds to the buyer's
 preferences and uses, for example, a second-score format.8

 Theorem 2 also clarifies why scoring auctions cannot, in general, implement the optimal
 solution. First, qhH and qlH differ generically in the optimal mechanism. Moreover, the optimal
 mechanism requires xhH > x™ in several cases. This said, scoring auctions have two potential
 advantages over the efficient auction. First, they allow for distortion in production. Second, they
 allow some distortion in allocation probabilities in the same direction as the optimal mechanism.
 The next section investigates these properties numerically.

 D Computational results. Having identified the constraints that scoring auctions place on
 allocations, we now turn to the question of their relative performance. We interpret the difference
 between the buyer's expected utility from using the optimal mechanism and from using the

 8 For the scoring auction to generate as much utility to the buyer as possible, type-specific downpayments must
 be included. These downpayments are an artifact of the discrete type space, where allocations only partially pin down
 payments. They maintain incentive compatibility and increase the buyer's utility. Fudenberg and Tiróle (1991) provide
 details.
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 (buyer-optimal) efficient auction as the surplus available to a strategic buyer. We ask to what
 extent scoring auctions can capture this surplus.

 To answer this question, we first compute an upper bound to the expected utility that scoring

 auctions generate by adding the constraints of Theorem 2 onto the initial problem and solving the
 resulting program numerically. The resulting expected utility is then compared with the expected
 utility from the efficient auction and the expected utility from the optimal mechanism.

 Figure 4 shows the results for an environment where v(q) = 3^/q, 6_x = 0_2 = 1, 02 =
 2, N = 2, and ak = 0.25. The value of A0{ varies along the x axis. The expected utility from the
 optimal mechanism lies above that from the optimal scoring auction, which, in turn, dominates that
 from the efficient auction. As the value of A0' increases, the expected utility decreases in all three
 mechanisms. This is to be expected. When A0j increases, the maximum level of welfare decreases
 because suppliers' fixed costs increase. Moreover, fixed costs become relatively more important
 as a source of adverse selection. The kink at A0x = 0.5625 corresponds to the point when the
 binding incentive compatibility constraint for type hL in the efficient mechanism switches from
 IQ¿,/// to 'ChLfhH (thus A0x = A62~q). The resulting increase in the weight of A6' in the buyer's
 expected utility explains the kink.

 As A01 tends to 0, the source of adverse selection reduces to one dimension, the marginal
 cost. In this case, Che ( 1 993) has shown that a scoring auction implements the optimal mechanism.
 The reason why the expected utility from the optimal scoring auction does not converge to the
 expected utility of the optimal mechanism in our graph is that there is some discontinuity in the
 optimal scoring auction at A0x = 0. As long as A0x > 0, scoring auctions impose that xiH > xhH
 (Theorem 2). This leaves some informational rent to IH and increases the rents of hL and IL
 relative to the case where x[H = xhH. When A0x = 0, suppliers IH and hH are essentially the
 same. The optimal scoring auction will, thus, set xlH = xhH and leave no rent to supplier IH.

 We replicate this simulation exercise for a range of environments by varying the values of the
 a*'s and some of the other parameters of the model. Table 3 reports the results. The third column
 reports the average percentage of the strategic surplus captured over the full range of values that
 A0! can take. The fourth column reports the maximum percentage of the surplus that the optimal
 scoring auction captures together with the corresponding value of A0! . The fifth column does
 the same for the worst relative performance of the optimal scoring auction. Finally, columns 6
 and 7 report the percentage of A0i values for which the performance of the optimal scoring
 auction is greater than 80% (column 6) or within 10 percentage points of its worst performance
 (column 7). For the core set of experiments (experiments 1-19), v(q) = aqb with a = 3 and
 b = 0.5, 0j = 02 = 1, 02 = 2, N = 2. The bottom part of the table considers other values for
 a, b, 02, and 02. (We keep N = 2in all our experiments because this is where the actual choice
 of mechanism is likely to matter most.) Figure 5 shows the relative performance of the optimal
 scoring auction as A0i changes for selected probability configurations.

 The results are as follows. First, in every experiment, there exists a value of A0x for which
 the optimal scoring auction does as well as the optimal mechanism. Second, the point at which
 this occurs seems somewhat persistent across environments. Third, the optimal scoring auction
 captures, on average, more than two thirds of the strategic surplus, even though this proportion
 can dip down to 20% for some values of A0i in some environments. Fourth, the optimal scoring
 auction does worst when the fixed cost and the marginal cost are negatively correlated. We now
 investigate each of these points in more detail.

 In every experiment, there exists a value of A0} for which the optimal scoring auction does
 as well as the optimal mechanism. Given Theorem 2, this must happen at parameter values such
 that there are binding incentive compatibility constraints directed to both IH and hH from low
 marginal-cost suppliers in the optimal scheme (otherwise, there is no chance that the qualities
 provided by suppliers IH and hH are the same in the optimal scheme). Inspection of Tables 1
 and 2, and Figures 2 and 3, suggests that the only candidates consistent with implementation
 with a scoring auction are solutions 1.1. c, 1.2.a, 1.2.b, or 1.2.c. (Recall that scoring auctions
 require xhH = x™.) Closer inspection of the numerical solution suggests that the maximum
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 TABLE 3 Percentage of the Strategic Surplus Captured by the Optimal Scoring Auction

 % of A0,'s Such that

 Percentage Is:
 Probabilities

 of/// ahH &hi &iL Average Maximum Maximum Minimum Minimum Opt. Mech. + 10%

 Core Parameter Values

 1 25 25 25 25 82.5 100 0.248 38.9 0.585 74.1 4.5

 2 20 30 20 30 87.4 100 0.248 73.9 0.574 86.6 19.4

 3 15 35 15 35 90.1 100 0.248 75.6 0.000 97.5 7.0

 4 10 40 10 40 82.3 100 0.248 59.3 1.124 56.7 25.8

 5 30 20 30 20 76.1 100 0.248 28.4 0.686 62.2 13.4

 6 35 15 35 15 68.5 100 0.248 19.1 0.799 52.7 22.4

 7 40 10 40 10 60.4 100 0.248 12.7 0.810 45.7 31.8

 8 20 20 30 30 81.2 100 0.180 42.3 0.596 68.2 5.0

 9 15 15 35 35 79.6 100 0.124 44.9 0.630 47.3 7.0

 10 10 10 40 40 78.6 100 0.068 44.2 0.698 40.8 6.5

 11 30 30 20 20 83.5 100 0.315 37.2 0.574 74.1 3.5

 12 35 35 15 15 83.9 100 0.383 37.6 0.563 75.6 3.5

 13 40 40 10 10 83.6 100 0.450 35.8 0.563 60.2 4.5

 14 20 30 30 20 77.9 100 0.248 46.5 0.709 44.8 14.9

 15 15 35 35 15 77.8 100 0.248 55.8 0.833 41.3 26.9

 16 10 40 40 10 82.1 100 0.248 65.0 0.968 45.5 35.6

 17 30 20 20 30 89.2 100 0.248 67.0 0.518 83.6 13.4

 18 35 15 15 35 94.8 100 0.248 80.9 0.000 100 20.4

 19 40 10 10 40 98.0 100 0.248 84.4 0.000 100 8.9

 Extensions

 20 45 45 5 5 82.6 100 0.506 20.9 0.000 50.2 2.0

 21 15 25 30 30 81.7 100 0.153 53.5 0.038 51.2 7.5

 22 16 23 41 20 75.2 100 0.180 46.3 0.821 39.3 13.4

 Robustness: a = 1

 23 25 25 25 25 82.5 100 0.028 38.9 0.065 74.1 4.5

 24 15 35 15 35 90.1 100 0.028 75.6 0.000 97.5 7.0

 25 35 15 35 15 68.5 100 0.028 19.1 0.088 52.7 22.4

 Robustness: b - 0.7

 26 25 25 25 25 0.737 100 0.285 0.429 2.078 49.3 24.9

 Robustness: A62 = 2
 27 25 25 25 25 0.751 100 0.180 0.409 0.765 53.2 19.9

 Robustness: 9_x =2
 28 25 25 25 25 0.827 100 0.248 0.389 0.585 74.6 4.0

 Note: Each experiment sets the probabilities of each type (ordered a!H, ahH, ahL, an), then computes the expected
 utility for the optimal mechanism, the efficient auction, and the optimal scoring auction for 201 values of A0i covering
 the full range of the parameter values allowed by the model.

 performance of the optimal scoring auction happens when the optimal mechanism corresponds
 to either solutions 1.2.a or 1.2.c.

 Inspection of Figure 5 and the results in Table 3 suggest that the optimum is reached at a
 similar region in each set of simulations (in particular, this point is always less than 0.5625, the
 point at which the binding incentive compatibility constraint for type hL in the efficient mechanism
 switches from lChLiiH to 'ChL,hH). This raises the question: why there and not elsewhere? The top
 right panel in Figure 5 suggests that that maximum level of expected utility can be reached for
 values of A0i to the right of the dip in revenue. To investigate this, we ran a set of experiments
 with the probabilities (40, 40, 10, 10) and (45, 45, 5, 5): experiments 13 and 20. In this setting,
 the optimal mechanism corresponds to solution 1.1. d in Table 1. In experiment 13, at A0{ =
 0.93375, the optimal scoring auction captures 99.03% of the available strategic surplus, whereas
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 ASKER AND CANTILLON / 17

 in experiment 20, at A0i = 1 .02375, this is raised to 99.89%. Whereas it appears that the scoring
 auction does well in these regions, it falls short of the optimal mechanism because of the restriction

 that xhH = x£H in the scoring auction.
 It has been noted that the point at which the optimal scoring auction does as well as the

 optimal scheme is constant across experiments 1-7 and 14-19. After further inspection, this is an
 artifact of the common symmetric structure of these parameter settings. These settings are such
 that a¡¿ + oihL = ahH + aÌH. A comparison with experiments 8 and 21 illustrates this point: in
 experiment 8, the probabilities are such that alL = ahL > otm = ahH, resulting in a move in the
 location of the optimum; experiment 21 makes a similar perturbation, with the additional shock
 thatch < ahH.

 The optimal scoring auction does very well overall. It captures, on average, more than two
 thirds of the surplus, and in 12 of the 19 core experiments reported in Table 3, it captures more
 than 80% of the surplus for the majority of the values A0' can take. This excellent performance
 seems due to the relative flexibility that scoring auctions leave in terms of allocation.

 Table 3 and Figure 5 also indicate that scoring auctions perform less well in some
 environments. This poor performance tends to happen around the point at which there is a
 kink in the expected utility of the efficient auction. This coincides with the point at which both
 incentive compatibility constraints out of type hL are close to binding in the efficient mechanism
 (one must bind, and the other is "close" to binding). As a result, those IC constraints leave little
 scope for rent extraction before they bind. Given that the scoring auction is less flexible in the face

 of these constraints than the optimal mechanism, it is not surprising that its relative performance
 suffers.

 Similarly, a negative correlation between the marginal cost and the fixed costs decreases
 the performance of the optimal scoring auction (see experiments 5-7). Intuitively, a negative
 correlation moves the environment further from the one-dimensional environment for which

 scoring auctions are known to do well (Che, 1993). The weight of types IH and hL is large in
 the total expected utility of the buyer, and so the gains from distorting quality tend to make qhH
 far from being first-best. In light of this, it is noteworthy that the scoring auction does not always

 perform strongly when types are positively correlated. In experiments 2 and 3, where types are
 increasingly correlated, the scoring auction appears to be doing increasingly well. However, in
 experiment 4, this trend does not continue. What is happening here is that the extra flexibility in
 the optimal mechanism is able to exploit the environment as it moves toward the one-dimensional
 case far sooner than the scoring auction. The relative performance of the scoring auction in
 experiment 4 reflects a reconfiguration of the optimal mechanism in the face of the changing
 environment, rather than any significant change in the scoring auction itself.

 Last, because the performance of the optimal scoring auction only gives us a bound on
 the performance of scoring auctions more generally, we also investigate the performance of
 nonoptimal scoring auctions. Specifically, we consider scoring rules that correspond to the true
 preferences of the buyer except that they place an arbitrary lower value on quality. For the case of
 S(p, q) = 0.95v(q) - p, for example, and across the core experiments explored in Table 3, we
 find that this naive scoring auction captures approximately 60% of the strategic surplus if it leads
 to a distortion in allocations relative to the efficient mechanism, whereas the ranking between the

 naive scoring auction and the efficient auction is unclear if both lead to the same allocations (and
 only differ in the induced qualities).

 5. Bargaining
 ■ We now turn to bargaining. Our goal in this section is to illustrate the potential costs and
 benefits of bargaining in the presence of quality concerns. A first difficulty that we face is
 in deciding what bargaining encompasses. Indeed, there are many ways to model bargaining
 between a buyer and one or several suppliers. Existing bargaining models include alternating
 offers between a buyer and a supplier (e.g., Rubinstein, 1982; Ausubel and Deneckere, 1989),
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 repeated buyer offers to a single supplier (e.g., Fudenberg and Tiróle, 1983), and models where
 a buyer faces several potential suppliers (e.g., Manelli and Vincent, 1995; De Fraja and Muthoo,
 2000). In this section, we call bargaining any procedure where suppliers are not put in direct
 competition with one another. Intuitively, once we allow the buyer to go back and forth between
 suppliers in search for the best bargain, we essentially have an auction. This dividing line is,
 of course, arbitrary.9 We explore the possibility of recalling a supplier after the breakdown of
 discussions in the next section.

 In line with the rest of the article, we adopt a mechanism design approach (this is in the
 spirit of Myerson and Satterthwaite, 1983; Riley and Zeckhauser, 1983; Wang, 1998). Our results
 then provide an upper bound to what bargaining can achieve in the environments we consider,
 independently of the specific form bargaining takes. When available, we identify a specific
 procedure that implements the optimal bargaining mechanism. To ensure comparability with the
 results in the previous sections, we assume that the buyer buys for sure and that there is no time
 discounting.10

 We answer the question in two steps. Each step corresponds to a different view of bargaining.
 First, we consider a buyer who bargains with a single supplier. We find that a menu of two take-
 it-or-leave-it offers implements the optimal bargaining mechanism. Second, we consider a buyer
 who bargains with multiple suppliers sequentially. The idea here is that the buyer is free to
 haggle with each supplier as much as he wants but once negotiation breaks down, he goes to
 another supplier and never returns. A sequence of take-it-or-leave-it offers implements the optimal

 sequential bargaining mechanism. As in the previous section, we first highlight the theoretical
 properties of the optimal bargaining mechanism before turning to numerical simulations to get a
 sense of magnitudes.

 D Theoretical properties

 One buyer - one supplier. Given the supplier's risk neutrality and the convexity of the buyer's
 preference over quality, we can summarize any bargaining procedure between a buyer and a
 supplier by a quality level and an expected payment. Let (pk, qk) denote the expected payment
 and the quality level provided by type k in the optimal direct mechanism. Lemma 5 shows that
 the price and the quality provided by suppliers in the optimal mechanism are only a function of
 their marginal costs. The intuition is that contracts of the form (p, q) are unable to screen over
 suppliers' fixed cost.

 Lemma 5. In the optimal direct mechanism, (plL, qlL) = (phLiqhL) and (plH, qlH) = (phH, qhH).

 Proof. Consider the outcome for the low marginal-cost types. Incentive compatibility requires

 IClLM - PlL - £i - #2#/¿ ^ PhL - 01 - iaÇhL

 ICa¿,/l : PhL - 0i - 0¿qhL > Pu - 0i - Q_2qiL.

 Thus, pa - 6_2qiL = phL - 6_2qhL, and the outcomes lie on an isoprofit locus for suppliers hL
 and IL, {(p, q) : plL - 0_2qiL = PhL - 02#a¿}- Because the buyer has strictly convex preferences,
 there is a unique contract on this locus that maximizes his utility. Q.E.D.

 From now on, let (pL, qL) and (pH, qH) denote the outcome for the low marginal-cost types
 and the high marginal-cost types, respectively. The optimal direct mechanism solves

 max (alH + ahH)(v(qH) - pH) + (ahL + alL){v(qL) - pL)
 (pl^lUph^h)

 subject to suppliers' IR and IC constraints. Following standard arguments, supplier hH's IR
 constraint and the downward IC constraint bind

 9 For a different view, see Bulow and Klemperer (1996, 2009).
 As for the optimal mechanism, the requirement that the buyer buy for sure can be perfectly consistent with

 optimality if the buyer values the good sufficiently highly. The no-discount feature rules out time as a screening device.
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 p[H=Õl+ê2qH (8)

 PlL=PH-^H+iãqL. (9)

 Substituting for plH and p' into the objective function yields

 msMptiH + ahH)(v(qH) -Õx- Õ2qH) + (ahL + alL)(v(qL) - 0, - 6_2qL - A62qH).

 The solution is given by

 q[=i (io)

 ^ = argmax|v(^)-ö2^ -

 We have thus proved

 Theorem 3. The buyer's maximum expected utility from bargaining with a single supplier is
 given by

 Vx = (ahL + alL)(v(q) - 0, - ^4) + (a/7/ + aÄ//)max (ufe) - 0, - 02</ - ¡%+%)aA^ .

 Clearly, the optimal one-buyer one-supplier bargaining mechanism can be implemented by
 a menu of two take-it-or-leave-it offers, {(plH, qlH), (p[, q')}, given by (8)-(ll). The supplier
 accepts the offer as long as it meets her individual rationality constraint.

 Sequential bargaining. Suppose now that the buyer can bargain with several suppliers in any way
 he wants, as long as he does so sequentially. If negotiation with one supplier breaks down and
 he switches to another supplier, he cannot return to the initial supplier. The optimal sequential
 mechanism in this environment solves a dynamic programming problem. The buyer approaches
 suppliers one at a time and offers them a menu of optimal screening contracts that take into
 account the number of remaining suppliers.

 Let Vn describe the continuation value from the optimal sequential mechanism when n
 suppliers remain. Clearly, V' coincides with the buyer's expected utility from the optimal
 one-buyer one-supplier bargaining mechanism. When the buyer faces more than one supplier,
 exclusion is optimal, and the probability of negotiation breakdown (and thus of moving to
 another supplier) is strictly positive. The next lemma shows this and that the buyer's expected
 utility increases in the number of suppliers he faces.

 Lemma 6. Let Kn be the set of supplier types for whom the buyer's offers, when n buyers remain,

 are acceptable. The buyer's expected utility from the optimal sequential mechanism increases
 with the number of suppliers. In the optimal sequential mechanism, exclusion is optimal as soon
 as TV > 1. Moreover, 'Kn' < 'Kn_i' forali n > 1.

 Proof. The maximum surplus the buyer can extract from a supplier is v(q) - 0, - 6_2q, the
 maximum surplus generated by supplier IL. Because alL < 1, Vn < v(q) - 0_ , - 0_2q for all
 n. Whenever the buyer faces n > 1 remaining suppliers, an available strategy is to offer the
 contract (p, q), where p = 0, + 0_2q and q = q, that is only accepted by supplier IL. Thus,
 Vn > o¿ii(v(q) - 0_x - 0_2q) + (1 - oiii)Vn^x > Vn-'. This also shows that exclusion is optimal.

 Let x be the buyer's current expected payoff when n suppliers remain and Kn = {IL}, that
 is, Vn = x + (1 - oiii)Vn_'. Similarly, let j^ be the current expected payoff when Kn = {IL, ///}.
 The buyer prefers to make offers only acceptable to Kn - {IL} rather than to Kn = {IL, IH}
 if x -'-oLlHVn-' > y. Because Vn is increasing, Kn = {IL} preferred to Kn = {IL, IH) when n
 suppliers remain implies that Kn> = {IL} is preferred to Kn* - {IL, IH} for all n' > n. A similar
 argument establishes that if Ã^ = {/I, hL] is preferred to Kn = {/L, ///, hL], it is also preferred
 for n' > n. The same argument also applies when we replace Kn = {IL, IH] by Kn = {IL, hL}.
 The claim follows. Q.E.D.
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 TABLE 4 Contracts in the Optimal Sequential Mechanism

 Kn Offers (jp"H , qnH) and (pnL ,qnL) Vn (Continuation Value)

 IL (I, + #2£, q) otlLWfLB + (1 - OLlL)Vñ_x
 IL, hL (0, + 0^, q) (alL + û^)^? + («/* + a*//)^-!
 /¿, ///, ¿¿ IfAé^-Afl^ > 0^ (of/£ + ahL)WhFLB + «,„ F™

 (£, + 02Í, ^)and(0! + £2£,£) + *hHVn-x
 IfA0! - A(92g < 0:

 (0, + 02?£, ? *„) and (0, + 02£ + A6>2^, 4), with (a/L + othL){WFhBL - A62q*H)
 q*H=maJil^tiugmzKq{v(q)-02q - (a/¿g^¿) A02g}} alHWlH{q*H) + o^-i

 /L, IH (0, + 02q*H*,q*H), (0, + 0^+ A02^*, ?) «//X^/7 " A02?£)
 with^* = argmax{uto) - 02^ - ^A02^r} +otlHWiH{q^) + (ahL +ahH)Vn_l
 Solution possible only if A01 - A02q^ > 0.

 Note: The first column in the table indicates the set of supplier types who will accept the buyer's offer when n suppliers
 remain.

 Theorem 4. The outcome in the optimal sequential mechanism is a function of the number of
 remaining suppliers. When only one supplier remains, the outcome is described by (8)-(ll).
 When n > 1 suppliers remain, the outcome takes the form (pnH, qnH), (pnL , qnL) together with the
 set of supplier types for whom these contracts are acceptable. This menu of contracts is the one
 that yields the largest continuation value among the four described in Table 4.

 Proof. See Appendix A.

 As before, the buyer can implement the optimal sequential mechanism with a sequence of
 menus of take-it-or-leave-it offers. These offers take the form given in Theorem 4. In the unique
 sequential equilibrium, suppliers accept the best offer that is acceptable to them.

 Theorem 4 suggests that the optimal sequential mechanism has at least two potential
 advantages. First, it can distort production. Second, it can distort the probabilities of winning. For
 example, a first-period offer that is acceptable only to suppliers IL and IH distorts the probabilities

 that IH wins, xlH, upward and distort xhL downward relative to the probabilities in the efficient
 auction, as is sometimes required in the optimal mechanism. However, this comes at the cost of
 a distortion in the probabilities of allocating the contract to types IL and hH. Indeed, it is easy to
 check that xÌL < x™, unless the optimal offer in all rounds but the last is acceptable only to type
 IL (and recall from Theorem 1 that x¡L = x™ always in the optimal mechanism). In addition,
 XhH > xhH m an* cases except if Kn = {/L, IH, hL} for all n > 1.

 These costs and benefits of the optimal sequential mechanism are best illustrated for the
 case of two suppliers. To do this, we rewrite the expected utility from the efficient auction as
 X]Pr* VWk, where Pr¿ is the probability that the mechanism allocates the contract to a type-A:
 supplier and VWk is the associated virtual welfare. Table 5 summarizes the values that these
 variables take in the efficient auction when N = 2 (using Lemma 3).

 Similarly, the expected utility from the optimal sequential procedure can be written as
 J2¥rkVWk, where Pr¿ is the probability that the optimal sequential mechanism allocates the

 contract to supplier k and VWk is the "resulting^virtual welfare.11 The idea, then, is to compare
 the Pr^'s with the Pr^'s and the V Wk's with the V Wk's. The first example illustrates the advantage
 of being able to distort qualities.

 Example 1. The optimal sequential mechanism always captures a positive proportion of the
 strategicjurplus when A0i is sufficiently small. We prove this by showing that ^ Pr¿ V Wk <
 ^2PvkVWk. When A9' is small, the main source of adverse selection is marginal cost, and
 suppliers IL and hL, and IH and hH, respectively, are very much alike. Consider the strategy that

 1 x We write "resulting" in quotes because the virtual welfare associated with a given type is not uniquely pinned
 down in the sequential mechanism. We exploit this flexibility in the remaining discussion.
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 TABLE 5 Virtual Welfares and Probabilities in the Efficient Auction, by Type

 Type A0l-A02q>0 A6X - A02q < 0 ?rk=NakxFB, N = 2

 IL: WFB WFB 1 - (1 - alL)2
 hL: WhFLB - °^A6X WFB - °^-A6x (1 - aIL)2 - (1 - aIL - ahL)2

 OLhl &hL

 IH: WFB WFB + -

 (XlL + OLhL

 OtlH ,

 hti- hH- WFB WhH hti- hH- WhH WFB
 (XfiH &hH

 OLhL + (*IL-

 consists of making an offer that is acceptable only to suppliers IL and hL in the first period. Using
 Theorems 3 and 4, the resulting expected utility is given by

 V2 = (ahL + alL)W™ + (alH + ahH)Vx

 = alL{2-ahL-alLW™

 + ahL(2 - ahL - aIL) (whFLB - - A0,)
 ' oihL /

 + (alH + ahHf (whH^H) - ^±^'aO^h) ,

 where we have grouped types IH and hH. Comparing this^expression with the third column of
 Table 5 suggests that VWlL = VWlL and VWhL = VWhL. Moreover, PrA¿+Pr/¿ = 1 -
 (1 - ahL - auf = ?rhL + Pt/l,j= («ai + <x¡l)(2 - ®hL ~ o¿¡L). Thus, when A0{ is very small,
 ?riLVWlL+?YhLVWhL ~ VxlLVWlL+VrhLVWhL because VWhL ^VWlL. Turning to the utility
 contribution of types IH and hH in the efficient auction, we get, using Table 5 and after some
 simplifications,

 «/„(«/„ + 2ahH)WlFHB + ol'h WhFHB - (alH + 2ahH)(ahL + a/^A^

 + ((a//7 + OLhH){ahL + a/L) - a¡HahH)A0]

 = (<*/„ + ufÄ//)2 ^
 L («/// + (xhHy J

 + (of/// + ahH){' - ahH)AOi .

 The first term of this expression is strictly less than (alH +ahH)2( WhH(qxH) - l^[LH ^02qxH), given

 the way qxH is constructed (optimal level of distortion) and the fact that (aiH+¿^"h}^lú > ^St '
 The second term becomes negligible as A0x decreases. Thus, when A0x is small enough, the
 optimal sequential procedure dominates the efficient auction because it is able to distort qualities.

 End of Example 1.

 Another way to view Example 1 is to note that as A0i converges to zero, the environment
 converges essentially to the "standard" one-dimensional environment, where the optimal mech-
 anism is such that IL and hL win over hH and IH and qualities are distorted. The sequential
 mechanism replicates these features when K2 = {IL, hL}. In fact, the expected utility from the
 optimal sequential mechanism converges to the expected utility from the optimal mechanism as
 A01 converges to zero (Table 6 below provides evidence on this).

 In related research, Wang (1998) shows that a menu of take-it-or-leave-it offers implements
 the optimal mechanism in a multiperiod one-supplier setting with A0x = 0 and arbitrary discount
 rates. This is due to the fact that when 0_x =6{, time is not needed to screen over types. The
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 TABLE 6 Percentage of the Strategic Surplus Captured by the Optimal Sequential Procedure*

 A6>! at A01 at % A0, % A0,
 Probabilities Average Maximum at Maximum Minimum at Minimum s.t. > 80% s.t. > 0%

 1 25 25 25 25 -152.7 100 0 -504.4 0.5625 6.9 20.8

 2 20 30 20 30 -78.2 100 0 -279.6 0.5625 7.9 23.8

 3 15 35 15 35 -7.2 100 0 -83.6 0.5625 7.9 35.6

 4 10 40 10 40 55.9 100 0 39.2 0.5625 8.9 100

 5 30 20 30 20 -238.7 100 0 -663.9 0.66375 5.9 18.8

 6 35 15 35 15 -365.0 100 0 -942.2 0.7875 5.0 15.8

 7 40 10 40 10 -591.8 100 0 -1446.7 0.9 5.0 13.9

 8 20 20 30 30 -126.4 100 0 -404.0 0.5625 5.9 22.8

 9 15 15 35 35 -107.6 100 0 -356.2 0.5625 5.9 21.8

 10 10 10 40 40 -95.5 100 0 -284.4 0.5625 5.0 18.8

 11 30 30 20 20 -198.6 100 0 -746.5 0.5625 6.9 18.8

 12 35 35 15 15 -280.2 100 0 -1302.9 0.5625 6.9 14.9

 13 40 40 10 10 -394.1 100 0 -1961.4 0.5625 6.0 9.9

 14 20 30 30 20 -147.2 100 0 -384.1 0.66375 7.9 25.7
 15 15 35 35 15 -108.2 100 0 -276.6 0.7875 10.9 32.7

 16 10 40 40 10 -46.1 100 0 -164.7 0.9 15.8 40.6

 17 30 20 20 30 -129.3 100 0 -411.4 0.5625 5.9 16.8
 18 35 15 15 35 -93.9 100 0 -244.8 0.5625 5.0 13.9
 19 40 10 10 40 -61.4 100 0 -142.0 0.5625 4.0 13.9

 *Each experiment sets the value of the a*'s (ordered a¡H, ahH, othL,an) and computes the expected utility from the
 optimal mechanism, the optimal sequential auction, and the efficient auction for all the values for A0[ allowed by the
 model. Each experiment samples 101 equally spaced values for A0i.

 buyer only needs to screen over the variable costs (02's), and quality is a superior instrument to do
 this. Similarly, in our setting, as A6X -> 0, competition between suppliers becomes relatively less
 important for screening in the optimal mechanism, allowing bargaining to perform comparatively
 well.

 The next example illustrates the advantage provided by the ability to distort allocation
 probabilities.

 Example 2. For large values of A0u the optimal sequential mechanism can capture a positive
 fraction of the strategic surplus. Again, we prove this by comparing ]T Vrk V Wk and J2 ?rk V Wk.
 Consider the period 1 strategy that offers a contract to types IL and IH only. The resulting expected
 utility for the buyer is given by

 Vi = olil{W™ - A02q*¿) + OLlHWlH{q*¿) + (1 - alH - alL)Vx

 = alL{2 - alH - aaW™

 + ahL(' - alH - alL) (whFLB - - A0x'
 ' &hL /

 + a¡H(2 - alH - aIL) (-
 '{2-a,H-alL) (2-a,H-uIL) " )

 + «*„(! -alH-aJwhH(tì) V - ^Aö, - (g"+g<t)Aftg-, H - - -^ + V oihH OLhH H ahH(ahH + ahL) ")

 k

 Comparing this^with the probabilities and the levels of virtual welfare in Table 5, it is clear
 that VWlL = VWlL, VWhL = VWhL, VWlH > VWIH, and VWhH ^ VWhH. Moreover, the
 sequential procedure essentially places IH in front of hL in the order of priority in the allocation,
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 resulting in the following ordering of probabilities: Pr/L > Pr/L, JPr¿¿ > Pr^, Pr/7/ <$C Pr///? and

 ?rhH < ?rhH. When ^A0l is large enough, F^L <£ F^, KJFm. Thus, this allocation can
 increase expected utility. End of Example 2.

 An example of an environment where the effects described in Examples 1 and 2 arise is the

 following: v{q) = 3y/q, 0_x = 0_2, 62 = 2, alL = ahH = 0.35, alH = ahL = 0.15.

 D Computational results. We now explore the performance of bargaining numerically.
 Because sequential bargaining always does better than bargaining with a single supplier, we
 focus on sequential bargaining with two suppliers. Table 6 reports the proportion of the strategic
 surplus, that is, the difference between the expected utility from the optimal mechanism and
 the expected utility from the efficient auction, that the optimal sequential mechanism captures

 with two suppliers. For the simulations, we assume that v(q) = 3^/q, 9_x = 0_2 = 1, and 62 = 2.
 6' takes values between 1 and 2.125, which corresponds to the maximum value permitted by the
 assumption that W¡FHB < W™ . Negative values indicate that the optimal sequential mechanism
 does worse than the efficient auction.

 On average (i.e., across all possible values of A#i), the optimal sequential mechanism does
 worse, and often much worse, than the efficient auction. Hence, it necessarily does worse than
 the optimal mechanism and a scoring auction. The poor performance of sequential mechanisms
 is confirmed by the small fraction of values for A0' where the optimal sequential mechanism
 captures at least 80% of the strategic surplus (second-to-last column) and where it does better
 than the efficient auction (last column).

 There are two exceptions to the poor performance of the optimal sequential mechanism.
 First, and as suggested by Example 1, the optimal sequential mechanism does very well and,
 in fact, as well as the optimal mechanism when A0] = 0 (fourth column in Table 6). Second,
 the optimal sequential mechanism does better overall when there is strong positive correlation
 between types (experiment 4 in Table 6). The reason is related to Example 2 above: when costs

 are highly correlated, ^ is high, and the virtual welfare associated with type hL tends to be lower
 than the virtual welfare associated with IH. Thus, a contract acceptable only to types IH and IL in
 the first period reverses the order of priority of types hL and IH and can increase expected utility.
 Note, however, that this is not the end of the story. Indeed, the optimal sequential mechanism

 does poorly in experiments 17-19, even though the ratio ^ is high there too. The reason is that a
 first-period offer acceptable to types IL and IH also increases the probability that a type IH wins
 over a type IL. Experiments 17-19 illustrate that this is particularly costly in terms of expected
 utility when alH > a¡L .

 6. Recall

 ■ Suppose now that the buyer can go back and forth between suppliers at no cost. 12 The optimal
 mechanism in this case corresponds to the optimal mechanism derived in Section 3 and provides
 an upper bound to what the buyer can achieve. Intuitively, allowing the buyer to go back and forth
 between suppliers blurs the distinction between bargaining and auctions. In fact, if bargaining
 involves multiple suppliers and no restriction on negotiation with one and the other, auctions can
 be seen as special cases of bargaining protocols.

 Because this upper bound does not provide much insight about the new effects at play when
 we allow the buyer to go back and forth between suppliers, we explore these new effects in a
 simple stylized model with two suppliers and one recall stage. In stage 1, the buyer makes a
 take-it-or-leave-it offer to supplier 1. If supplier 1 rejects the buyer's offer, the buyer makes a
 take-it-or-leave-it offer to supplier 2 in stage 2. Finally, if supplier 2 rejects the offer, the buyer
 can make one last offer to either supplier (recall stage). The supplier to whom the offer is made
 accepts or rejects and this ends the game. Offers are observed by all.

 12 De Fraja and Muthoo (2000) consider a bargaining game between a seller and two potential buyers where the
 seller can go back and forth between the two buyers. Switching involves a cost.
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 Relative to the optimal sequential mechanism, two new effects arise. First, recall increases
 the competition between the two suppliers and thus makes rent extraction easier. Second, recall
 reduces the buyer's commitment power because, with positive probability at equilibrium, he
 comes back to the same supplier with a more attractive offer. Suppliers take this into account:
 they only accept an offer if it yields a higher payoff than their expected payoff from a recall offer.

 In the remainder of this section, we discuss the key theoretical features of the equilibrium in

 this simple game and complement them with results from numerical experiments using the same
 parameters as earlier. The purpose is to illustrate these two new effects, not to fully characterize
 the equilibrium. We use sequential equilibrium as the equilibrium concept (Kreps and Wilson,
 1982).

 In any candidate equilibrium, the buyer recalls the supplier with the highest updated
 probability of having low marginal costs. Let ß)L , 'i'H , ¡i'L , 'x'H denote the updated probabilities
 about supplier fs type at the beginning of the recall stage, and let n[ = 'x'L + ß[L, the
 updated probability that supplier / has low marginal costs. The offer the buyer makes to
 the recalled supplier depends on his updated beliefs about the supplier's type. Its derivation
 follows the steps in Section 5 with the updated beliefs.13 We denote the resulting offer by

 (/^ecalV), 4ralV)), O£calV), 4tfCalV)). We show in Appendix B that the buyer's expected
 utility from recalling supplier / is increasing in 7r¿. Thus, if nx > 7r2, the buyer prefers to recall
 supplier 1. If 7T1 < 7T2, he prefers to recall supplier 2. He is indifferent otherwise.

 This means that we have essentially three categories of equilibrium paths to consider: paths
 where the buyer recalls supplier 1 for sure if he reaches the recall stage (i.e., if supplier 1 rejected
 his offer in stage 1 and supplier 2 rejected his offer in stage 2), paths where he recalls supplier
 2 for sure, and paths where he mixes at the recall stage. All three categories of paths arise in
 equilibrium play in the numerical experiments (we show in Appendix B that on-equilibrium play
 where the buyer recalls supplier 2 for sure yields the same expected utility for the buyer as the
 optimal sequential mechanism).

 In stages 1 and 2, the equilibrium specifies the beliefs, the set of supplier types for whom
 the offer is acceptable, the menu of optimal screening contracts, and the suppliers' decision
 rule. The logic for deriving the optimal screening contracts is similar to that in the proof of
 Theorem 4. In particular, there are six possible offers to consider in stage 1 : offers that are only
 acceptable to type IL, offers that are only acceptable to the low marginal-cost types (IL and hL),
 offers that are only acceptable to low fixed-cost types (IL and IH), offers that are acceptable to
 all but type hH, offers that are acceptable to all types, and offers that are acceptable to none.

 The difference with sequential bargaining is that suppliers' individual rationality constraints
 are now endogenous and depend on their expectations about the recall stage. To illustrate, consider
 any equilibrium and let 8 be the probability that supplier 2 declines the buyer's offer in stage 2
 and a the probability that the buyer recalls supplier 1 . The offer in the recall stage acts as an
 outside option for supplier 1 when he considers his stage 1 offer. Specifically, type IL will accept
 offer (pL, qL) in stage 1 if and only if

 PL~6_x-9_2qL > 8a(0t + A^-'V) + g^^V )-£■ "M^V)).

 which yields the following endogenous individual rationality constraint:

 IR/i : Pl > £, + e2qL + 8a(A0l + A62q™à'jT1)) . (12)
 rent

 Repeating the exercise for other types yields, at stage 1,

 IR*i : Pl > 0i + 02qL + 8a A02q™a'7Tl) (13)

 13 We can show that ¡i'hH > 0 holds in all equilibria.
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 IR/// :/>//>£,+ 92qH + Äor A0! (14)

 W+H:pH>Õl+Õ2qH. (15)

 Compared to the earlier bargaining model, in which supplier 1 's outside option is zero, recall
 clearly increases supplier 1 's bargaining power in stage 1 . On the other hand, exclusion of supplier

 2 in stage 2 is now possible. This reduces supplier 2's bargaining power.
 Another way to look at the effect of recall is that it introduces an additional instrument to

 screen over fixed costs. In sequential bargaining, exclusion is the only way for the buyer to screen
 over supplier 1 's fixed costs. In the presence of recall, the buyer can screen supplier 1 's fixed costs

 over stages because 0x > 0_x + 8<jA0x (compare (12) and (13), and (14) and (15)).14
 We now discuss the second effect introduced by recall: the potential reduction of commitment

 power. The Coase conjecture has described how repeated interactions with potential suppliers
 can hurt a buyer because of the impossibility for the buyer to commit not to buy from a supplier
 (Coase, 1972). This commitment problem is not an issue in our case because we impose that the
 buyer buys anyway, even when there is no recall. Instead, commitment issues arise in two subtle
 ways in our setting: first, through the inability of the buyer to commit to a quality level for the

 high marginal-cost types, qr^cal' in the recall stage and, second, through the inability of the buyer
 to commit to recalling supplier 1 with a given probability if he is indifferent between the two
 suppliers in the recall stage.

 Let us first consider the loss of commitment power due to the fact that the buyer cannot

 commit to qT¿caii in stage 1 . Suppose IR/Z/ or lRhL bind in stage 1 . Let Pri and Pr2 be the probability of

 a trade in stage 1 and stage 2, respectively, and let fx , f2 be the expected stage payoffs for the buyer

 in stages 1 and 2. Finally, let Kreca11 be the buyer's expected utility in the recall stage. The buyer's

 expected utility from the recall game is given by P^/j + Pr2/2 + (1 - Prj - Pr2)Freca11. Because
 IR/£ or IRÄL bind in stage 'JX is a function of q™can (see (12) and (13)). Yet, because q™caXX is chosen

 in the recall stage, it is chosen to maximize VrecaXX and not Vxxfx + Pr2/2 + (1 - Pr! - Pr2)Freca11.
 In other words, recall can sometimes involve suboptimal choices for q™caXX due to the inability of

 the buyer to commit.
 The second commitment problem arises from the fact that the buyer cannot commit ex ante

 to a specific behavior in the event that he is indifferent at the recall stage. This leads to multiple
 equilibria in the recall game, some of which are inferior from the buyer's perspective. To see this,
 suppose the buyer makes an offer that is only acceptable to type IL in stage 1 . At the beginning
 of stage 2, his continuation payoff depends on his recall strategy. Clearly, if his stage 2 offer is
 such that n x / 7T2, then the buyer should recall the supplier for whom n1 is highest. If nx = n2,
 however (which implies his stage 2 offer is only acceptable to type /L), his continuation payoff is
 increasing in a, the probability of recalling supplier 1, because this reduces supplier 2's outside
 option. Because any a is consistent with sequential equilibrium, there may exist a value of cr, a*,
 such that if a > a*, making an offer in stage 2 to type IL only is optimal, whereas another strategy
 is better if a < a*. This leads to the possibility of multiple equilibria. Of course, if the buyer
 could commit, he would commit to a value of a that selects the better equilibrium. In practice,
 however, he cannot commit because he is indifferent ex post between recalling supplier 1 and
 supplier 2.

 Because of the possibility of multiple equilibria, we evaluate bargaining with recall in
 two steps.15 In a first step, we focus on the sequential equilibrium that generates the highest
 expected utility for the buyer when there are multiple equilibria. Table 7 reports the percentage
 of the strategic surplus that this equilibrium captures for the same parameters as Table 6. Thus
 Table 7 serves to illustrate, from the buyer's point of view, the best-case interaction between the
 increased competition among suppliers and the potential lack of commitment regarding qualities

 14 There is an analogy with bargaining over multiple periods of time when there is discounting. Here, 8a plays the
 role of an endogenous time discount.

 15 Code for computing equilibrium and accompanying explanatory text are available online.
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 TABLE 8 Performance of the Least Favorable Equilibria in the Recall Game*

 o/ r. . n Conditional on multiple equilibria:
 w/Multiple % of A6' s.t. Utility Mean Difference: Maximum Difference:

 Probabilities Equilibria < Efficient Mechanism Best and Worst** Best and Worst

 1 25 25 25 25 12.9 7.7 15.1 26.8

 2 20 30 20 30 0.0 -

 3 15 35 15 35 44.6 77.8 70.1 116.2

 4 10 40 10 40 34.7 0.0 16.2 27.4

 5 30 20 30 20 21.8 31.8 30.0 66.5

 6 35 15 35 15 37.6 68.4 53.8 125.7

 7 40 10 40 10 56.4 80.7 111.7 209.8

 8 20 20 30 30 0.0 - -

 9 15 15 35 35 17.8 100.0 141.8 163.7

 10 10 10 40 40 49.5 100.0 196.2 352.5

 11 30 30 20 20 16.8 17.6 26.2 64.5

 12 35 35 15 15 24.8 28.0 38.8 111.5

 13 40 40 10 10 32.7 57.6 64.4 197.0

 14 20 30 30 20 6.9 0.0 4.6 8.0

 15 15 35 35 15 0.0 - - -

 16 10 40 40 10 0.0 - - -

 17 30 20 20 30 16.8 29.4 23.3 46.5

 18 35 15 15 35 17.8 50.0 37.0 69.7

 19 40 10 10 40 17.8 61.1 55.4 99.1

 *Each experiment sets the value of the «¿'s (ordered a¡H, ahH, ahL, a¡L) and computes the expected utility from the
 optimal mechanism, the optimal sequential auction, and the efficient auction for all the values for A0{ allowed by the
 model. Each experiment samples 101 equally spaced values for A^ .

 **"Mean difference: best and worst" describes the difference in the percentage of strategic surplus captured by the
 best and worst equilibrium of the recall game. The mean is over values of A0i conditional on the existence of multiple
 equilibria.

 that recall introduces. It shows that the competition effect dominates: relative to the optimal
 sequential mechanism, the buyer is able to capture a much larger fraction of the strategic surplus
 (comparison between Table 6 and Table 7). This dominance is uniform for all values of A¿V
 On average, bargaining with recall continues to perform worse than the optimal scoring auction
 (comparison between Table 3 and Table 7). It can do better for some values of A#i , however. The
 last column of Table 7 shows the percentage of values for A#i for which bargaining with recall
 does better.

 In a second step, we focus on the parameters for which multiple equilibria exist. Table 8
 shows that equilibrium multiplicity is pervasive in the recall game. When multiple equilibria exist,
 the difference in buyer expected utility between the best and the worst equilibria can represent
 a large fraction of the strategic surplus (last two columns). Conditioning on multiple equilibria
 existing, the third column gives the percentage of A6i for which the buyer is worse off in the worst

 equilibrium of bargaining with recall than in the efficient mechanism. In 7 of the 15 experiments
 with multiple equilibria, the efficient mechanism does better in the majority of cases. In two
 cases, experiments 4 and 14, the worst equilibria are never worse than the efficient mechanism.
 Experiments 14-16 are particularly interesting as they suggest that, as high fixed-cost types
 become more likely, multiple equilibria problems may become less important.

 Taken together, the results for the recall game yield two messages. First, even introducing
 limited direct competition among suppliers (through the recall stage) can yield great benefits.
 This echoes and reinforces the message from the comparison between sequential bargaining and
 the optimal scoring auction on the benefit of competition. Second, commitment about allocation
 decisions is a key issue, and the lack of commitment on this dimension can unravel many of the
 benefits of competition. Lack of commitment about qualities, however, appears less problematic.
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 7. Concluding remarks
 ■ In this article, we have asked how a buyer should optimally structure his buying process
 when suppliers' private information is multidimensional and quality is contractible, and how well
 commonly used procedures such as scoring auctions and bargaining perform. We have answered
 the second question by combining a theoretical analysis of the restrictions that such simpler
 procedures impose on allocations with numerical analyses of their performance.

 Our main results are that scoring auctions do well and that bargaining does poorly. Our
 interpretation of both sets of results, combined with our analysis of how recall changes those
 results, is that utility maximization is more about "getting allocation probabilities right" than
 about distorting qualities. This is the main reason why scoring auctions do well and bargaining
 does so poorly. This is also why the buyer's loss of commitment regarding allocation in the recall
 game is more costly than his loss of commitment regarding qualities.

 Because the scoring auction's "right kind of flexibility" in terms of allocation probabilities
 and the generic misallocation of contracts in bargaining are intrinsic features of these procedures
 and do not depend on the number of suppliers, we are confident that the bottom line of our
 numerical results extends to more than two suppliers. (Of course, as the number of suppliers goes
 to infinity, it is straightforward to show that the expected utility from all procedures converges to

 the same value, which is WFDB - full extraction.)
 An a priori restrictive assumption in our analysis is the binary structure of private

 information, and it is worthwhile to comment on it here. First, we note that the main results

 concerning the optimal mechanism (such as the facts that it depends on the number of suppliers,
 that it involves both productive and allocative inefficiencies, and that suppliers with the same
 marginal cost for quality generically supply different quality levels) are all driven by the
 endogeneity of the binding incentive compatibility constraints. For this reason, we expect them
 to hold in more general environments. Second, the generic misallocation in bargaining can only
 become worse in richer informational environments, whereas scoring auctions continue to allocate
 the contract efficiently, conditional on the announced scoring rule. Thus, under the (reasonable)
 conjecture that optimal allocation is the first-order issue in these complex procurement settings,
 the dominance of scoring auctions is likely to extend to these richer environments.

 The poor performance of bargaining in this article is in stark contrast with its popularity
 among practitioners in complex procurement settings. This might be due to procurement man-
 agers' intrinsic preference for procedures over which they have control or to objective factors not

 modelled in this article, such as unknown preferences, noncontractibility, renegotiation, or other
 moral hazard- type issues. Those objective factors may provide a rationale for using bargaining
 over scoring auctions in complex procurement. Studying their impact on the performance of
 bargaining is a venue for further research.

 Alternatively, what is referred to in common speech as "bargaining" may incorporate
 elements of competition between suppliers, however loosely structured this competition may
 be. If this is true, then the results from the recall game suggest that even introducing a little
 competition may dramatically improve the performance of bargaining-like procedures, perhaps
 justifying the ubiquity of what is loosely termed "negotiation" or "bargaining."

 Appendix A

 This Appendix contains the proofs for the results in sections 3-5.

 Proof of Lemma 1. The claim relies on the fact that the function f(t) = tN for N > 2 is strictly convex. There are two
 generic cases to rule out: two constraints binding with no type in common, and two nonnested constraints binding with
 some type in common.

 Case I: No overlap. Suppose, toward a contradiction, that the constraint for IH and the constraint for {hH, hL} bind.
 Then, from (4), N(alHxlH + ahHxhH + ahLxhL) = 2 - (1 - alH)N - (1 - ahH - othL)N > I - (' - a¡H - ahH - ahL)N
 because 1 +(1 - a¡H - <xhH - ahL) = (1 -a¡H) + (1 - othH -aA¿)and(l -a¡H)aná(l - ahH - oía¿) lie in (1 - aiH -
 &hH - oihL , 1). That is, (4) is violated for {IH, hH, hL}. All cases with no overlap are proved in this way.
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 Case 2: Some overlap. Suppose, toward a contradiction that the constraint for {IH, hH}, and that for {hH, hL}, are
 binding. Because (4) holds for h H, this means that

 N (amXiH + othHxhH + othLxhL) > 1 - (1 - alH - ahH)N - (1 - ahH - ahL)N +(1 - ahH) N

 > 1 - (1 - aiH - ahH - ahL)N by convexity .
 This contradicts (4) for {IH, hH, hL}. All cases with some overlap are proved in this way. This proves that binding
 constraints are nested and that no more than one constraint of each type binds. Q.E.D.

 Proof of Lemma 3. Let UkJ be the expected utility of a type k pretending she is of type j. To satisfy incentive compatibility,

 while minimizing suppliers' rents, suppliers' expected utilities must be set such that Uk = max7_¿¿ UkJ. Let UhH = 0 (we
 can check ex post that this will satisfy supplier hH's incentive compatibility constraints).

 Claim 1: UhL = max{UhL,hH, UhUH}.

 Proof of Claim 1. We simply need to show that UhUL < UhL^hH or UhLJL < UhLJH. By definition, UhLJL - UiL -
 x™A6x. If Uil = UlLM, we get UhUL = UhL + (x™ - x™)A6x < UhL. If, instead, UlL = U,UH, we have UhUL =
 Uih + x™A62q - x™ AÖ! < UlH + x™ A02q - x™ A6X = UhUH < UhL (we can rule out UlL = UlLthH because it is
 dominated for supplier IL).

 Claim 2. UlH = UlH,hH = x^AO,.

 Proof of Claim 2. We first show that U¡HthH > U¡HihL. By definition, U¡Hm = UhL + x™ A6X - x™qA02, where UhL =
 max{UhLhH, UhLjfí) by Claim 1. We consider each case in turn.

 (a) If UhL = UhL,hH, then UlHML = x[* A62q + x™ A6X -x™q_A62 and UlH,hH > UlHM if and only if xFh*{A6x -
 A02q) - x£j}(A0' - A02~q) < 0. The first term is negative because, by assumption, WlHÇq) < WhL(q). The second
 term may be positive or negative, but even when it is negative, x™(AQ' - A62q) < x^{A6x - A62q) < 0 because

 q_>qmdx™ <x™.
 (b) If UhL = UhLJH, then UlHM = UlH - x™(A6x - A02q) + x™(A0l - A02q) > UlH because -x™(A6x-

 A62q) + x™(AQx - A62q) < 0 by a similar argument as in point (a).

 We next show that UlHMH > UlHJL = UlL - x[LB A62q_. When UlL = U,LJH, UlHJL = UlH + x™ A02q - x™ A62q_ <
 Uih. When UlL = UlL,hL, UlHJL = UhL + x™ A9X - xfLB A02q_ < UlHML = UhL + x™ A6>, - x™ A62q_. We conclude
 that Uih = Uihmh-

 Claim 3: U¡¿ = U¡L^L.

 Proof of Claim 3. When UhL = UhLJH, UlLM = x™ AQX - x™ A<9, + xf*q&02 + x^A0{ > UlLJH = x™qA62 +
 x™A6>, because x™ > x™. When UhL = UhL,hH, U¡LM = x™ A6{ +x™qA62. Given that UlLJH = xfHBqA02 +
 x[jjA0i, Un^i > Uiljh if and only if x™ A6X - x™ A627j > x£ß(A0i - A92~q), which is automatically satisfied
 when A6i - A02q > 0 (indeed, x™ A0x - x™ A02q > x[*(A0x - A02q) > x™(A0x - A02q)' the only time when
 UhL - UhL,hH-

 This leads us to

 Uih - UiH,hH - xhH A0'

 UhH =0

 UhL = maai{UhLthH, UhUH} = max {x™qA02, -x™{A6x - A02q) + *™ AÖ, }

 Uil = UlL,hL=xFhLBA0x+UhL.

 In practice, this generates two cases depending on the sign of A6X - A2~q. When A9' - A2~q > 0, Uh¿,hH > UhL¿H.
 When A0, - A2q < 0, UhLJH > UhLMH. Q.E.D.

 Proof of Lemma 4. Consider the following change of variables: zXk=xk, z2k = xkqk. Let F(zxk,z2k,Uk) =

 N J2k ak(zxk Wk(^-) - Uk). The problem becomes

 max F(zxk,z2k,Uk) s.t.
 Z'k,Z2kMk

 Uk > Uj + zijißij - exk) + z2j(62J - 02k) for all k, j e {hH, IH, hL,lL)

 Uk > 0 for all it G [hH,lH,hL,lL]

 I V
 Nj2akZ'k < 1 - I 1 -J2Œk) for a'' subsets K of {hH, IH, hL, IL}
 k<EK ' keK I

 N ]T akzlk = 1.
 ke{hHJH,hL,lL)
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 The constraints are linear in the control variables, so the constraint qualification holds and the objective function is
 concave.16 The first-order conditions of the resulting Lagrangian are thus necessary and sufficient for a global maximum.

 To prove that the first-order conditions of the original problem are also necessary and sufficient, we need to check
 that the first-order conditions of the two problems are equivalent. To see this, let G(xk,qk, Uk) gather all constraint
 terms of the Lagrangian of the original problem, and let G(zlk, z2k, Uk) gather the constraint terms of the Lagrangian of

 the transformed problem. We must show that (x¡, q*k, Uk) solves the first-order conditions of max^ tÇktUk F(xk, qk, Uk) +

 G(xk,qk, £/¿)ifandonlyif(jc¿*, x¡q¡, Uk) solves the first-order conditions of maxZU)Z2/t)£/it F(zu,z2k, Uk) + G(zik,z2k, Uk).
 The first-order conditions with respect to Uk are identical. The first-order condition with respect to qk, Fqk(x¡, q¡, Uk) +

 Gqk(x¡, q*k, U¡) = 0, takes the form

 Nakx*k W'k(q¡) - J2 xixl(°2k - 02/) = 0

 (where k¡ are the Lagrangian multipliers of the constraints). This is equivalent to the first-order conditions of the
 transformed problem with respect to z2k,

 NotkW'k (^j - £>(02* -62l) = 0 (Al)
 as long as x¡ > 0 for all k, a consequence of the nonexclusion condition (5). Finally, the first-order condition with respect
 to xk, FXk(x¡, q*k, Uk) + GXk(x¡, q¡, U¡) = 0, takes the form

 Na.W^qD-Y^^i^k-O^ + qKOu-eM-N £ YK<*k = 0. (A2)
 KstkeK

 The first-order condition of the transformed problem takes the form

 NakWk(Z^) 'zlkj - NakZ-^Wk'(Z-^) 'zikj -J2^i(0iic-0ii)- ^ N £ yKak = 0. 'zlkj zlk 'zikj ^ k^k
 This is equivalent to (A2) as soon as (Al) holds. Q.E.D.

 Proof of Theorem 2. Let Sk(q) = ^v{q) - 0'k - 62kq. We first prove the necessary conditions. Recall from the discussion
 in the main text that, in a scoring auction, suppliers select their offers to maximize the score they generate, given their

 profit target, (v(q) - 6' - d'q - n). The solution only depends on suppliers' marginal cost, which establishes condition
 (1) given that 62lH = 62hH > 92hL = 62iL. Condition (2) follows from the fact that IL can always generate a strictly higher
 score than either IH or hL for all choices of the scoring rule !;(.). Similarly, both IH and hL can always generate a strictly

 higher score than hH, so they must win against an hH type.

 When xhL > jcj"¿n, ShL(qhL) > S¡H(qiH), or else IH should have priority over hL in the allocation. This implies that

 v(qhL) - 0i - 0_2qhL > v(qiH) - £i - Õ2qiH, that is,

 A01 - A02qhL < v{qhL) - v(qlH) - 62{qhL - qiH).

 In addition, incentive compatibility requires that IH generates a higher score by choosing q[H than qhL, that is,

 vfahL) - v(qiH) - Õ2(qhL - qÌH) < 0.

 Combining both inequalities yields condition (3). Similarly, when xlH > x™ , SiH{qiH) > ShL{qhL), else hL should
 have priority in the allocation. This implies A0i - A62q¡H + 9_2{qhL - qin) + v(qiH) - v(qhL) > 0. In addition, hL must
 be generating a higher score by choosing qhL over qlH, that is, 0_2(qhL - qm) + %///) - v(qhL) < 0. Combining both
 inequalities yields condition (4).

 To prove sufficiency, we construct a scoring rule that implements the intended allocation in a second-score auction

 (in a second-score auction, it is a dominant strategy to submit bids generating scores Sk(qk) = maxq{v(q) - 6xk - 02kq}).
 Consider

 v(q) = v(q)'[qSqiH] + v{qlH)'{q>q¡H]+€'{q>qhL].

 For this scoring auction to implement the outcome, two conditions must be satisfied. First, suppliers must be choosing
 the assigned qualities when they maximize their scores. Second, the ranking of the scores must (weakly) correspond to
 the assigned ranking of types in the allocation.

 16 The Hessian is block diagonal with each block given by

 ' ak%W -akZ-^W"0~ Ak Ak

 Ak zik
 0 0 0
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 Given the shape of this scoring rule, the two relevant choices are qlH and qhL -I H prefers q¡H to qhL if and only if

 u(<7///) - Q_'- 02qiH > v(qiH) + e - 0, - 62qhL, that is, e < 02(qhL - qui) (hH's preferences yield the same condition).
 hL prefers qhL to qlH if and only if v(q¡H) + e-Õi- 0_2qhL > v(q¡H) - 0 , - 0_2qlH, that is, e > 0_2(qhL - qlH) (/L's
 preferences yield the same condition). Hence, suppliers choose their assigned qualities if e satisfies the following
 inequalities:

 (LfáhL - qiH) < e < Õ2{qhL - q¡H' (A3)

 which is possible by condition (1). Next, hL generates a higher score if and only if ShL(qhL) = v(q¡H) + s - 6X - 6_2qhL >
 SihÜih) = v(qtH) -0_'- Õ2qiH, that is,

 s > A6>! - d2q,H + 02qhL = A6X - A62qhL + 62(qhL - qlH). (A4)

 IH generates a higher score otherwise. Inequalities (A3) and (A4) are always compatible if A0i - A02qhL < 0 holds.
 When the solution is such that xiH > x™ , we need SiH(qiH) > ShL(qhL):

 s < A0] - 62q¡H + 0_2qhL = AOi - A02q,H + 6_2(qhL - qlH)

 instead. It is compatible with (A3) if A6X - AQ2qlH > 0, which is guaranteed by condition (4). Q.E.D.

 Proof of Theorem 4. In the last period, the result follows from the derivation in the one-buyer one-supplier case. Let Kn be

 the set of supplier types for whom the buyer's offer is acceptable when n suppliers remain. Given suppliers' cost structure,

 Kn e{{lL},{lL,lH}, {lL,hL}, {lL,lH,hL}, {lH,hH, hL, IL}}. Lemma 6 rules out Kn = {lH,hH, hL, IL}. We
 examine the optimal outcome for the other four inclusion sets. By Lemma 5, we can restrict attention to outcomes of the

 form (/?//, qH), {pL,qi). The optimal outcome when Kn = {IL} is trivial.

 Kn = {hL, IL). Only one outcome is offered in this case: (Qx + 6_2q, q). It satisfies the IR constraint of type hL and the

 IC constraint of type IL . Type IH (and a fortiori type h H) is excluded because p = 0] -'- Q_2q < 0_ x + 62q_ by assumption.

 Kn = {lH,hL,lL}. The optimal direct mechanism solves max(/7¿ ,qL),(PH ,9//){(«a¿ +oi¡L)(v(qL) - pL) + o¿iH(v(qH) -
 pH)} subject to type ///'s IR constraint, pH - 6_ , - 62qH > 0, type hUs IR constraint, pL - 0' - 9_2qL > 0, and the IC
 constraint that low marginal types do not select the contract intended for the high marginal types, pL - 0_2qL >/?//- 0_2qH .

 Clearly, IH 's IR constraint binds so that the two remaining constraints can be expressed as

 IRai : Pl > Ox + 0_2qL

 IC : Pl>O.x +t2qi + &02qH.

 If A01 - A62q > 0, IR/,¿ binds and IC is slack at the optimum. The buyer's expected utility is given by

 (an + <*hL){v(q) - 0i - e_2q) + aiH(v(q) - 0, - 92q).

 If A0! - A0{q < 0, the IC constraint binds and IR/,/, may or may not bind depending on whether q *H = arg max^ {{ahL +

 a,L)(v(q) -9_'- fL2q - ^02qH) + alH(v(qH) - 0t - Õ2qH)} satisfies the condition that A6>, - A02q*H < 0. The resulting
 buyer's expected utility is given by

 (alL + ahL) (v(q) - 0, - Q_2q_ - A02q]^ + alH {v(q*H) - 0, - Õ2q*H) .

 Kn = {IH, IL), ///'s IR constraint binds, pH = 9_ , + Õ2qH, and /I's IC constraint binds, pL = 9_ , + 02^¿ + A02qH. The

 optimal direct mechanism solves maxí7¿í?//{a///(u(^//) - 0, - 02^//) + ot¡L(v(qL) - 0t - 02^¿ ~ A02^//)], thus qL = q_

 and ¿7^* = argmax{v(^) - 02^ - f^ A#2#} > ^r^. For this solution to be feasible, we need in addition that hL is indeed
 excluded, that is, that pL -0x - 6_2qL < 0, namely A0j - A02q*H* > 0. The buyer's expected utility is given by

 an (v(q) - 0 , - 0_2q_ - A92q*H*^) + alH (v(q*H*) - 0, - 02q**) .

 Q.E.D.

 Appendix B

 Supporting results for the recall section follow.

 Lemma Bl . Suppose ll'h > 0 and let V{ni ) denote the buyer's expected utility from the recall stage when ll)l + iilhL =ni.
 Then V(nl) is increasing in nl .

 Proof. From the derivation in Section 5 and as long as nl e (0, 1), the buyer's expected utility from the recall stage is
 equal to

 Vin1) = arg max {(1 - tt'XK?//) - Ö, - Õ2qH) + 7r¡(v(q) - Õx - 02q - A02qH)' .

 By the envelope theorem,
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 - V(tt') = - (v(qH) - 0, - Õ2qH) + (v(q) -6X- Q_2q_ - A02qH)

 = - (v(qH) - 6X - 02qH) + (v(q) - 0, - 02q)

 > 0 by the definition of q. Q.E.D.

 Lemma B2. All sequential equilibria of the recall game in which the buyer recalls supplier 2 for sure on the equilibrium
 path yield the same expected utility to the buyer as the optimal sequential bargaining mechanism.

 Proof. In the proof, we take as given that the buyer will recall supplier 2 for sure if supplier 1 and supplier 2 both reject

 his offer in stages 1 and 2, respectively, and focus on the subgame starting in stage 2 after a rejection by supplier 1 . In the

 recall stage, sequential rationality requires that the buyer makes the offers (/^ecall(7r2), q™cal](n2)), (p™ca]i(jr2), qT^x'n2%
 where n1 = '±lL + ßhL corresponds to his updated beliefs about supplier 2. The proof proceeds through three claims.

 Claim 1. In stage 2, the IR constraints of the low marginal-cost suppliers are the same and the IR constraints of the high
 marginal-cost suppliers are the same.

 Proof of Claim 1. Suppose supplier 2 expects that the buyer will have beliefs ß2L, ß]H ,

 n2 = ß2L + ix2hL). Thus, he expects the buyer to make the offer (p™m(tt2), q[ecaU(Tt2)), (px™x'n2), q™M(jr2)). The recall
 stage offer acts as supplier 2's outside option when he decides whether to accept the offer in stage 2. Type IH will accept
 offer (/?//, qH) in stage 2 if and only if

 Ph - 0, - 02qH > Örf^rVj-ö, - Õ2q^'n2),

 which yields pH >0x + 62qH as the IR constraint for type IH. Repeating this exercise for type hH, we have

 Ph-Õx- Õ2qH > ã1+ã2</gcall(7r2)-ã1 - Õ2q™'jT2),

 pTV)

 which also simplifies to pH > 6X + 62qH. This proves that types hH and IH have the same IR constraint. The proof for
 the second part of the claim is identical.

 Claim 2. Taking as given that the buyer recalls supplier 2 for sure in the recall stage, there exists a continuum of sequential

 equilibria in the subgame starting at stage 2 where the buyer makes the same offer in stage 2 and in the recall stage. The

 continuation value at stage 2 in these equilibria is equal to V'(ahL + atL), the expected value from the optimal one-buyer
 one-supplier bargaining mechanism defined in Theorem 3.

 Proof of Claim 2. Consider the following strategies by the buyer and supplier 2. In stage 2, the buyer makes the
 supplier the offers (p2H, q2H), (p2L , q') defined in (8)-(l 1), which correspond to the optimal take-it-or-leave-it offers that

 implement the optimal one-buyer one-supplier bargaining mechanism. In the recall stage, the buyer makes the offers

 O^V2), q[ecM(n2)), {pT]'*2)i 4ÎTV2 )), where n2 = ß2L + 'i'L correspond to his updated beliefs about supplier
 2. If supplier 2 prefers the stage 2 offer over the recall stage offer, he accepts the stage 2 offer. He accepts the recall offer

 if the recall offer is preferred. If indifferent, the type-ex* supplier accepts the offer in stage 2 with probability kk such that

 (x^IIwZ'h) = Th+Zh ' If a11 tyPes' when indifferent> accept with certainty, then beliefs are such that n2 > alL + ahL.
 Supplier 2 accepts the offer in the recall stage.

 Clearly, supplier 2's strategy is optimal and so is the buyer's recall strategy. If supplier 2 sometimes accepts in the
 recall stage, these strategies lead to identical offers in both stages given the requirement that {XlLOílL+XhLCÍhL^ = aiL+<*hL

 If all types accept in stage 2, q2H > g¡5calI(7r2) given the off-the-equilibrium beliefs n2 > alL + ahL if Xk = 0 for all k.

 In both cases, the buyer's expected payoff is equal to Vx = (ahL + otiL)(v(q) - Õ i - 6_2q) + (alH + ahH)maxq(v(q) -

 Q' - &iq - la^+"'hLH'q A62). The final step is to argue that it is optimal in stage 2 for the buyer to offer the one-shot
 take-it-or-leave-it offer defined in (8) - (1 1). This is the case because this offer yields the same expected utility as the
 optimal one-buyer one-supplier bargaining mechanism.

 Claim 3. There is no other sequential equilibrium in the subgame starting in stage 2.

 Proof of Claim 3. By Claim 1, the stage 2 offers are either only acceptable to the low marginal cost types, to only the
 high marginal cost types, to no types, or to all types. We consider these cases in turn:

 Case I. Stage 2 offers are acceptable to all types.

 Because the optimal offer made by the buyer is unique conditional on the strategies of supplier 2 described in Claim 2, we

 consider whether other equilibria exist in which supplier 2 mixes differently when indifferent (yielding n2 / a¡L + ahL)

 or where off-equilibrium beliefs are such that n2 < alL + ahL. Let (p2H, q2H), (p2L,ql) denote the stage 2 offers of the
 buyer in such hypothetical alternate equilibria.
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 (i) Equilibria where all types accept in stage 2 and off-equilibrium beliefs are n2 < aiL +ahL. In such an equi-
 librium, qTH°M(7T2) > qracM((XiL +ahL). This recall offer acts as a constraint on (p2H,q2H), (p2L,q2L) leading to
 an expected utility to the buyer equal to (a¡L + ahL)(v(q) - 0x - 6_2q) + (a¡H + ahH)(v(qT¡cM(n2)) - 0{ - 02q -

 ^^q™'n2)Ae2) < (ahL + alL)(v(q) -6{- 6_2q_ñ (alH + a^H) max, (ufo) - Õ , - 02q - ^±^qA62).
 The buyer is better off not offering an acceptable contract in stage 2 and waiting until the recall stage to offer the

 optimal one-shot contract (note that, by Lemma Bl, recall when n2 < a¡L + ahL implies recall of supplier 2 in this
 alternate strategy because n2 = alL + ahL > n2). Thus, there cannot be such equilibria.

 (ii) Equilibria where some types mix in such a way that n2 ^ aiL +ahL.
 Consider first equilibrium candidates such that n2 > aiL + ahL. Some low marginal cost types must be rejecting

 the stage 2 offer to wait for the recall offer and because, by assumption, the stage 2 offer is acceptable for them, it

 must be that they are indifferent. Thus q^ca]'n2) = q2H must hold. Consider the buyer's resulting expected utility:

 {XiHOtiH + XhHahH) (v(q2H) - 6 1 - Õ2q2H)

 + (XlLalL + XhLahL) (v(q2L) - 6X - 02q2L - A02q2H)

 + ((1 - llH)otlH + (1 - khH)ahH) (v(q™n(7T2)) - 0, - Õ2q™'7Z2))

 + ((1 - XlL)alL 4- (1 - XhL)ahL) (v(qL) - 0 , - A62q^'n2) - 0_2qL) .

 q™a]'n2) = ql is optimal if (*"«"+*"«»*> = ^1^j')a//-+;'-^)^¿' or, in other words, if n2 = alL +ahL,a contra-
 diction.

 Consider next equilibrium candidates such that n2 < a¡L + ahL . If some low marginal cost types wait until the recall

 stage, then q^cM{n2) = q2H must hold and we reach a contradiction as before. If not, so that tt2 = 0, q^cM{n2) = q
 and the individual rationality constraint of low marginal cost types require that q2H > ~q. The buyer's resulting expected

 utility is strictly less than Vx , his expected utility of the one-shot game if he does not make any offer in stage 2 and

 makes the optimal one-shot offer in the recall game.

 Case 2. Stage 2 offer only acceptable to the low (or high) marginal-cost types.

 This class of potential equilibria can be ignored because by case 1 above and Claim 2, the buyer can obtain the same
 expected utility as the optimal bargaining mechanism by playing according to the sequential equilibrium strategies
 described in Claim 2.

 Case 3. Stage 2 offer not acceptable to any types.

 Trivially, the expected utility from making this offer in stage 2 reaches the bound set by the optimal bargaining mechanism

 because the certainty of recall means that the offers made in the recall stage will be those corresponding to the optimal

 bargaining mechanism.
 This is the final step in establishing Lemma B2. Q.E.D.
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